Photon Counting Laser Radar

Dale G. Fried Active Optical Systems Group

July 17, 2012

dgf@LL.mit.edu; 781-981-6806

This work is sponsored by the National Geospatial Intelligence Agency and USSOUTHCOM under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

3-D Imaging with Laser Radar

Example 3-D Imagery: Kennedy Space Flight Center

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MIT Ladar Course- 3 Dale Fried 07/17/12

Example 3D Imagery: Grand Canyon

Example 3-D Imagery: Grand Canyon South Rim

MIT Ladar Course- 5 Dale Fried 07/17/12 Approved for Public Release NGA 11-067

- Overview of 3-D Ladar
- ALIRT system
 - Hardware and processing
 - Example collections and data utility
- Ladar system considerations
 - Detector technology
 - Scanning
 - Signal & laser power
 - Measurement rates

ALIRT 3-D Imaging System

(Airborne Lidar Imaging Research Testbed)

MIT Ladar Course- 7 Dale Fried 07/17/12

System in Aircraft

Operation and Processing Stations

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MIT Ladar Course- 8 Dale Fried 07/17/12

Geiger-Mode APD Array and Headboard

32 x 128 APD Detector Array

Straight-On View of Array

Headboard Controls Array Function and Reads Out Data

Geiger-Mode Imager: Single-Photon Detection

Single-photon detection is the most efficient use of light

- Photons are detected one at a time
- Times-of-arrival are recorded
- No readout noise penalty
- No photons wasted

Detection is a random process

Noise (dark & light)

- Individual noise detections are indistinguishable from signal detections
- Noise detections are randomly distributed in time
- Signal detections are clustered

0.

2

4

6

Average Number of Photons Detected, N_{det}

8

10

ALIRT Processing Workflow

MIT Ladar Course- 13 Dale Fried 07/17/12

ALIRT Absolute Geolocation Capability

ALIRT Collection Areas: Haiti Disaster Relief Efforts

MIT Ladar Course- 15 Dale Fried 07/17/12

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Wide-Area Mapping Example Over Haiti

MIT Ladar Course- 16 Dale Fried 07/17/12

Example of Trafficability Analysis

MIT Ladar Course- 17 Dale Fried 07/17/12

Helicopter Landing Zone Determination

- Current state-of-the-art algorithms are robust
- Challenges include getting data to end user quickly and in an appropriate format

Rain Forest in El Yunque National Forest, Puerto Rico

MIT Ladar Course- 19 Dale Fried 07/17/12

Rain Forest FOPEN -El Yunque National Forest

Collection parameters: Flight altitude: 10 kft AGL Imaging time: 15 sec in each of two passes Laser: 1 W, 8 kHz, 1064 nm

MIT Ladar Course- 20 Dale Fried 07/17/12

Trail Detection

MIT Ladar Course- 21 Dale Fried 07/17/12

FALCON-I Foliage Penetration System

- Overview of 3-D Ladar
- ALIRT system
 - Hardware and processing
 - Example collections and data utility
- Ladar system considerations
 - Detector technology
 - Scanning
 - Signal & laser power
 - Measurement rates

Detector Technology

		Detector Format	
		Single- or Few-Pixel	Large Array
		10³ - 10⁵× mo	ore detectors
	Linear-Mode		
ode			
В В			
atinç			
pera		100×	
r O	Photon-Counting	less	
ecto		light _	
Dete			

Detector Technology

		Detector Format				
		Single- or Few-Pixel	Large Array			
		 Sophisticated readout circuitry possible Lower collection rate 	+ High collection rate- Simple pixel readout circuit			
		10 ³ - 10 ⁵ × more detectors				
	Linear-Mode	Most commercial systems	New products			
Detector Operating Mode	 + Simple noise rejection - Need lots of light; require 1000 detected photons - Compromised range resolution 					
	Photon-Counting	Early demonstrations	Specialized systems			
	 + Most efficient use of every photon; requires average of only 10-15 detected photons + Tight range resolution +/- Post-processing - High data volume 					

Detector Technology

		Detector Format	
		Single- or Few-Pixel + Sophisticated readout circuitry possible - Lower collection rate 10 ³ - 10 ⁵ × mc	Large Array + High collection rate - Simple pixel readout circuit
Detector Operating Mode	Linear-Mode	Most commercial systems	New products
	 + Simple noise rejection - Need lots of light; require 1000 detected photons - Compromised range resolution 	 + COTS: Optech, Leica, Reigl, etc + Simple detection - Accurate, fast scanning - Lower collection rate - Medium range: 0.3 - 3 km 	+ 3D video + Simple, compact - Short ranges: 0.1 - 1 km
	Photon-Counting + Most efficient use of every photon; requires average of only 10-15 detected photons + Tight range resolution +/- Post-processing - High data volume	Early demonstrations	Specialized systems: (e.g. ALIRT, JIGSAW, HALOE, FALCON-I) Cameras becoming available + Long-range: 3 – 15 km + Country-sized collection rates - Accurate scanning

Area Collection Rate Comparison

Area Collection Rate Limitations

Note: scanning more than 2x wider often results in image degradation due to shadowing.

MIT Ladar Course- 28 Dale Fried 07/17/12

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Area Collection Rate Limitations

MIT Ladar Course- 29 Dale Fried 07/17/12

Area Collection Rate Limitations

Area Collection Rate Scaling

Area Collection Rates: 1 m Resolution

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

- Airborne laser radars can rapidly collect human-scale 3-D maps
 - Wide-area maps of terrain and urban areas
 - Foliage poke-thru
- Arrays of photon-counting detectors are enabling a new generation of ladar systems
 - Photon-counting = light efficiency = reduced size/weight/power
 - Larger arrays = higher measurement rates = reduced operating costs
 - High ACR systems must fly higher, thereby requiring photoncounting technology
- Large arrays of Geiger-Mode APDs have been field-proven

Backup