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ABSTRACT
Development of a remote sensing system that can reliably identify

nutrient deficiencies may reduce time spent sampling turfgrass areas
and allow for site-specific applications of fertilizers. The objectives of
this research were to evaluate the use of a ground-based remote sens-
ing system and partial least-squares (PLS) regression to predict the
N concentration, biomass production, chlorophyll content, and visual
quality of creeping bentgrass (Agrostis stolonifera L. ‘Penncross’)
growing under varying N rates, and to compare PLS regression to other
vegetative indices. The study consisted of three N treatments (0.0, 12.2,
and 24.4 kg ha21 15 d21) arranged in a randomized complete block
design. Spectral radiance measurements were obtained from plots using
a fiber-optic spectrometer to calculate vegetative indices. The PLS re-
gression analysis yielded a strong relationship between actual and
predictedN concentration of creeping bentgrass plant tissue during 2002
and 2003 (r2 5 0.95 and 0.71 respectively). However, PLS regression
failed to produce a prediction for the chlorophyll concentration. Re-
gressing the normalized vegetation index (NDVI), Stress1 (R706 /R760),
and Stress2 (R706 /R813) ratios against N concentration yielded better
results in 2003 when there were distinct differences in N concentration
between the N rates. These results indicate that the traditional veg-
etation indices like NDVI might be better suited for determining the
relative N status of turfgrass plants when compared against a well-
fertilized control.More researchwill be required to determine if the PLS
regression analysis produces prediction models that are able to spe-
cifically identify a particular nutrient deficiency or plant stress, and how
the results will vary between grass species.

TRADITIONAL plant tissue sampling and analysis is time
and labor intensive and requires collection of several

samples from representative areas to adequately charac-
terize variability found on turfgrass sites. In addition,
turfgrass quality may decline because of nutrient defi-
ciencies in the interim between sampling and the
availability of sample results. Therefore, many turfgrass
managers make scheduled applications of N to prevent a
deficiency. Unnecessary applications of fertilizer N may
result in nutrient runoff and leaching with ultimate con-
tamination of surface and groundwater. Remote sensing
systems have the potential to be used as a monitoring tool
for scheduling nutrient applications. Coupling a remote
sensing system with mapping software to monitor the
nutrient status of turfgrass areas may allow for site-
specific applications of fertilizer only to areas that require
supplemental nutrition.

Handheld chlorophyll meters have been used to rap-
idly assess plant N status in agronomic crops (Piekielek
and Fox, 1992; Schepers et al., 1996; Wood et al., 1992)
by measuring optical density at two wavelengths and con-
verting to a value that has been positively correlated with
chlorophyll and N. Rodriguez and Miller (2000) reported
that handheld chlorophyll meter readings are correlated
with chlorophyll and N concentrations of greenhouse-
grown St. Augustinegrass [Stenotaphrum secondatum
(Walt.) Kuntze]. While handheld chlorophyll meters are
an attractive option for monitoring turfgrass health, they
are limited in the amount of spectral information collected
from the turfgrass canopy since they collect reflectance
values at a limited number of wavelengths.

An alternative to chlorophyll meters is tomeasure light
reflected from the turfgrass canopy with a multispectral
radiometer. A major advantage of canopy analysis is that
a single measure of reflected radiation can characterize
the N status of many plants within a selected area. Mul-
tispectral radiometry assesses reflectance of light at var-
ious wavelengths where the percentage of light not
reflected is either absorbed by the plant or transmitted
to the soil surface.

Leaf reflectance in the visible portion of the spectrum
(400–700 nm) is relatively low due to increased ab-
sorption by chlorophyll and is correlated (r2 . 0.97) with
concentration of leaf pigments (Gitelson and Merzlyak,
1994; Horler et al., 1983). As plants become stressed, they
exhibit decreased reflectance in the near-infrared (NIR)
spectral region due to decreased cell layers and increased
reflectance in the red spectral region due to decreased
chlorophyll content (Guyot, 1990). Near-infrared reflec-
tance spectroscopy is a rapid analytical method for mea-
suring the chemical composition of materials. Covalent
bonds between atoms such as C, N, H, and O absorb
energy in the infrared region (IR) and have vibrational
frequencies and overtones that are detectable in the NIR
region (750–2500 nm) (Malley et al., 2000; Gillon et al.,
1999). Monitoring these changes in spectral reflectance
may reliably indicate changes in plant growth or phys-
iological status (Carter, 1994; Carter and Miller, 1994).
The normalized difference vegetation index (NDVI),
defined as the NIR minus visible reflectance divided by
NIR plus visible reflectance, has been widely used for
remote sensing of vegetation for nearly three decades
(Rouse et al., 1973). This index has been used in many
different ways, including estimation of crop yields and
end-of-season aboveground dry biomass (Tucker et al.,
1986). Several studies have identified the use of NDVI
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as a tool in identifying turfgrass plants exhibiting signs
of stress (Fenstermaker-Shaulis et al., 1997; Trenholm
et al., 1999a). Reflectance in the NIR range divided by
reflectance in the red range (IR/R) has been associated
with shoot biomass in corn (Zea mays L.) and soybean
[Glycine max (L.) Merr.] by Daughtry et al. (1982) and
turfgrass quality and density in seashore paspalum
(Paspalum vaginatum, Swartz) and bermudagrass
[Cynodon dactylon (L.) 3 C. transvaalensis Burtt Davy]
(Trenholm et al., 1999b). Blackmer et al. (1996) identified
reflectance at 550 and 710 nm as being the best indica-
tors of N deficiency in corn.
Despite the growing interest in using remote sensing

to manage a turfgrass system, spectral analysis has not
yet received widespread acceptance by turfgrass man-
agers. One reason for this may be that after more than
two decades of research in the field of agronomy, we
cannot yet make quantitative, or even qualitative, trans-
lations from the raw spectral data without first calibrat-
ing some sort of empirical model (Richardson et al.,
2004). Given the successful use of NIR spectroscopy in
predicting biochemical composition of samples, it follows
that the visible/NIR spectra could potentially provide
information about the chemical composition of samples
as if we were to perform a full set of laboratory analysis.
Research often involves the use of controllable vari-

ables (factors) to explain or predict other variables (re-
sponses). For instance, we may be interested in the
influence of N concentration on the biomass production
of a particular turfgrass. When these factors are few in
number, not highly collinear, and have a well-understood
relationship to the responses, multiple linear regression
(MLR) can be a good way to turn data into useable
information (Tobias, 1997). However, in the case of re-
mote sensing, the factors used are the measurements
from the spectrum that can number in the hundreds
or thousands and are likely to be highly collinear. When
using MLR in cases such as this, it is easy to produce a
model that fits the data perfectly from the sample set,
while having limited ability in predicting values from non-
modeled samples. When this occurs, the model is said to
be “over-fitting” the data set. Over-fitting occurs when
there are many factors, but only a small number of the
factors account for most of the variation in the response.
Partial least-squares regression (PLS) is a method de-

veloped for constructing predictive models when there
are a large number of highly collinear factors (Tobias,
1997). During the calculation of PLS, theX- and Y-scores
are chosen so that the relationship between successive
pairs of scores are as strong as possible. The PLS factors
are computed as linear combinations of spectral ampli-
tudes and the responses are predicted linearly based on
these extracted factors. As a result, a PLS regression is
not based on a single or even a few frequencies as would
be the case with MLR or stepwise regression. In com-
parison, the factors used in the PLS regression are com-
puted as linear combinations of the spectral amplitudes,
and the response variable is predicted based on these
linear extractions. Instead of being based on a small group
of frequencies aswould be the case in usingMLR, thePLS
regression is based on all of the input factors.

Ideally, the use of a remote sensing in turfgrass sys-
tems will predict nutritional deficiencies early enough
to allow for site-specific fertilization before the decline
in turfgrass health and the associated visual symptoms.
Accurate prediction of nutrient deficiencies through
the use of spectral reflectance requires the use of a sta-
tistical method that considers the number of variables
involved and tests for multicollinearity. Traditional
multiple-regression techniques do not compensate for
collinearity and can increase the risk of overfitting if the
reflectance at each wavelength is considered as an ex-
planatory (X) variable (Helland, 1988). The PLS re-
gression can be used to develop predictive models in
cases where the number of factors exceeds sample num-
bers and are highly collinear (Tobias, 1997). In contrast
to traditional multiple-regression techniques that only
consider the influence of the independent variables,
PLS regression utilizes the influence of both the inde-
pendent and dependent variables in the formation of
the factors (Garthwaite, 1994; Tobias, 1997).

The specific objectives of this research were: (i) to
determine if PLS regression of reflectance data may
accurately be used to determine the N concentration in
a turfgrass canopy; (ii) to investigate the relationship be-
tween multispectral reflectance data, N concentration,
chlorophyll content, and turfgrass quality; and (iii) com-
pare PLS regression to other vegetative indices for pre-
diction of N concentration in a turfgrass system.

MATERIALS AND METHODS

Experimental Setup

A 2-yr field experiment was conducted at the Iowa State
University Horticulture research station in Gilbert, IA, on a
creeping bentgrass putting green constructed according to
U.S. Golf Association specifications (USGA, 1993) to deter-
mine the correlation between N concentration of plant tissue
and remotely sensed multispectral scanner data. Plots were
1.52 by 1.52 m in size and treatments were arranged in a ran-
domized complete block design with four replications.

Three N fertilizer treatments were applied at 0, 12.2, and
24.4 kg ha21, fourteen times on a 15-d interval as urea in
solution with a CO2 sprayer. Spray volume was 283 mL and
spray pressure was 207 kPa. In addition to N, all plots received
uniform P at 2.44 kg ha21 15 d21 applied as phosphoric acid
and K at 5.0 kg ha21 15 d21 applied as potassium chloride.

Treatments were applied from 25 March to 8 October 2002
and from 9 June to 23 Sept. 2003 on a 15-d interval. Plots were
mowed four times a week at a height of 3.8 mm, removing
clippings after each mowing. Irrigation was applied as needed
to maintain optimum turfgrass quality.

Biological Parameters

Plots were evaluated for visual quality based on color,
shoot density, and uniformity of stand, where 1 was live grass,
6 was minimally acceptable turfgrass quality, and 9 was dark-
green, dense, uniform grass. Samples collected for nutrient
analysis and biomass production were collected by removing
clippings from a 1.74-m2 area in conjunction with collection of
reflectance data once every 30 d during the growing season.
One gram of fresh tissue from each plot was analyzed for total
chlorophyll content according to the method of Arnon (1949)
as modified by Bruinsma (1961). The remaining plant tissue
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was oven-dried at 608C for 4 d and weighed to determine
biomass production. Samples were analyzed for P, K, and
micronutrient concentration using inductively coupled argon
plasma spectroscopy. Total N concentration was determined
by using a LECO FP-2000 nitrogen/protein analyzer (LECO
Corp., St. Joseph, MI).

Reflectance Measurements

Remotely sensed data was collected with a field portable
fiber optic spectrometer (Model S2000, Ocean Optics, Winter
Park, FL) fitted with 30-degree field-of-view optics mounted
29.8 cm above the ground, resulting in a sample area of
182 cm2. Spectrometer data was collected on a 30-d interval
corresponding with the collection of biological parameter data.
To reduce variability due to cloud cover and solar zenith angle,
the tip of the fiber was mounted inside a rectangular plastic
hood that extended down to the turf canopy. Auxiliary lighting
was provided by two 12-V halogen lights with an irradiance of
2250 mmol m22 s21. Radiance values were expressed as per-
centage spectral reflectance after standardization with a white
ceramic tile standard. The spectrometer has a nominal spectral
range from 200 to 1200 nm with approximately 0.3-nm nomi-
nal bandwidth. Thus, for each measurement the spectrometer
program automatically collects 2500 data points covering the
entire spectral range. A linear interpolation routine was used
to estimate values at 1-nm interval before calculation of indices
from the reflectance data. Eight scans were averaged for every
measurement and approximately 10 measurements were
collected and averaged for each plot. Recalibration of the
instrument with the white standard was conducted immedi-
ately before collecting measurements from each replication.
Canopy reflectance was measured on days with minimal cloud
cover between 1100 and 1400 h central standard time (CST).

Reflectance at individual wavelengths and several spectral
indices were examined for comparison to PLS regression results.
They included: NDVI 5 (R800 2 R600)/(R800 1 R600); IR/R 5
(R780 /R600); Stress1 5 (R706 /R760) (Trenholm et al., 1999b);
Stress2 5 (R706 /R813) (Trenholm et al., 1999b); and WL550 5
R550 (Blackmer et al., 1996); andWL7105R710 (Blackmer et al.,
1996), where Rx is the reflectance value at the x wavelength.

Statistical Analysis

An analysis of variance (ANOVA) was performed to test
fertilizer N rate effects on leaf N, chlorophyll content, biomass
production, and visual quality using PROC ANOVA in SAS
(SAS Institute, 1999). Correlation coefficients were calculated
using PROC CORR in SAS while prediction equations for
tissue N concentration, biomass production, chlorophyll con-
centration, and visual quality were developed by regressing
field data against derived spectra using PROC REG. Mean
separation was determined using LSD at P 5 0.05. The pro-
cedure for spectral calibration was PLS regression as per-
formed by SAS (SAS Institute, 1999). Equations were
validated through single sample cross-validation. For the
cross-validation, 10% of the sample was left out for prediction
at a time and the number of factors that minimized the pre-
dicted residual sum of squares (PRESS) was chosen (see Fig. 1
for graphical illustration). This process was repeated so that
every observation was used exactly once for cross-validation.

RESULTS AND DISCUSSION
A weak relationship was observed between actual

biomass production and the predicted biomass produc-
tion as calculated through partial least-squares regres-

sion (Table 1). This is likely due to a reduction in
turfgrass growth during the summer months without a
corresponding change in spectral properties. Previous
research by Osborne et al. (2002) has shown that the
spectral properties of plants are influenced primarily by
the biochemical content and moisture status of the plant
tissue. We theorize that the changes in spectral prop-
erties resulting from increased heat and/or drought
stress made it more difficult to observe a relationship
between spectral reflectance and actual biomass pro-
duction in our results.

Changes in tissue pigment concentrations translated
to variations in the spectral signatures at each N rate.
Figure 2 illustrates the mean reflectance spectra curves
of creeping bentgrass tissue for each N rate at the 22 July
2002 sampling date. Minimum reflectance in the blue
(400–500 nm) and red (650–690 nm) regions is char-
acteristic of maximum light absorption by chlorophyll.
The broad peak centering at 550 nm in the green region
(500–600 nm) is indicative of the minimal chlorophyll
absorption. Bentgrass tissue receiving no N (0 kg ha21

N) showed a greater increase in reflectance near 550 nm
compared to the other N rates, agreeing with the
findings reported by Buscaglia and Varco (2002) and
Fridgen and Varco (2004) from research conducted on

Number of Factors in PLS Regression
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Fig. 1. Graphical illustration of the predicted residual sum of squares
(PRESS) vs. the number of factors used in the partial least-squares
regression model.

Table 1. Effect of fertilizer N on canopy N concentration, biomass
production, chlorophyll concentration, and visual quality ratings
for creeping bentgrass in Gilbert, IA, during 2002 and 2003.

N rate N conc. Biomass Chlorophyll conc. Visual quality†

kg ha21 g kg21 g m2 d21 g kg21

2002

0.0 30.30 1.82 0.99 4.55
12.2 33.96 2.82 1.13 6.25
24.4 38.57 4.26 1.21 7.2
LSD(0.05) 3.96 0.81 0.10 0.81

2003

0.0 35.05 1.40 1.10 4.69
12.2 39.41 2.15 1.12 6.59
24.4 43.32 3.04 1.21 8.47
LSD(0.05) 3.49 0.85 0.05 0.54

†Visual quality was based on color, shoot density, and uniformity of stand,
where 1 was no live grass, 6 was minimally acceptable turfgrass quality,
and 9 was dark-green, dense, uniform grass.
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cotton (Gossypium hirsutum L.). Similar results were
observed at all sampling dates in 2002 and 2003.
Nitrogen treatments resulted in a wide range of re-

sponses for N concentration, biomass production, chlo-
rophyll concentration, and turfgrass quality in creeping
bentgrass plots during 2002 and 2003. The N treatments
resulted in different N concentrations that increased from
30.30 g kg21 in the 0 kg ha21 treatment to 38.57 g kg21 in
the 24.4 kg ha21 treatment during 2002 (Table 1). Ni-
trogen treatments succeeded in establishing tissue con-
centrations that ranged from low to sufficient according
to the sufficiency values reported by Jones et al. (1991).
Similar results were observed during 2003. Biomass pro-
duction, chlorophyll concentration, and visual quality
ratings also increased with increasing N rate during 2002
and 2003 (Table 1). The 0 kg ha21 N treatment resulted in

visual quality that was below the minimally acceptable
level of 6.0 along with the lowest chlorophyll concentra-
tion during both 2002 and 2003 due to increased chloro-
sis and low plant density. While the 12.2 kg ha21 N
treatment resulted in acceptable quality during 2002 and
2003, the 24.4 kg ha21 N treatment yielded the highest
quality and chlorophyll concentration characterized by
a dense, dark green turf canopy.

Coefficients of determination for the regression anal-
yses relating NDVI, IR/R, Stress1, Stress2, WL550, and
WL710 to the N concentration, biomass production, chlo-
rophyll concentration, and visual quality are shown in
Table 2. No relationships were observed betweenWL550
or WL710 and the N concentration, biomass production,
chlorophyll concentration, or visual quality. This contra-
dicts the results of Blackmer et al. (1996) who reported
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Fig. 2. Mean spectral reflectance for each of the three N treatments on 22 July 2002 in Gilbert, IA, on creeping bentgrass (Agrostis stolonifera L.).
Similar trends were observed for all sampling dates in 2002 and 2003.

Table 2. Coefficient of determination for regressions of N concentration, biomass production, chlorophyll concentration, and visual quality
of creeping bentgrass regressed on normalized difference vegetation index (NDVI), infrared/red (IR/R), Stress1, Stress2, spectral
reflectance at 550 nm (WL550), and spectral reflectance at 710 nm (WL710), Gilbert, IA, 2002–2003.

Calibration NDVI† IR/R‡ Stress1§ Stress2¶ WL550# WL710††

R2

2002

N concentration, g kg21 0.23 0.32 0.58 0.51 NS‡‡ 0.16
Biomass production, g m2 d21 0.35 0.24 0.25 0.17 0.28 0.30
Chlorophyll content, mg kg21 0.32 0.26 0.29 0.29 0.20 0.19
Visual quality 0.54 0.71 0.71 0.67 0.25 0.32

2003

N concentration, g kg21 0.63 0.48 0.63 0.68 0.16 0.39
Biomass production, g m2 d21 0.34 0.23 0.27 0.35 NS 0.16
Chlorophyll content, mg kg21 0.15 0.22 0.24 0.16 0.34 0.30
Visual quality 0.40 0.45 0.54 0.44 0.43 0.38

†Normalized difference vegetation index (NDVI) 5 (R800 2 R600)/(R800 1 R600).
‡ Infrared/red (IR/R) 5 (R780 /R600).
§ Stress1 5 (R706 /R760).
¶ Stress2 5 (R706 /R813).
#WL550 5 R550.
††WL710 5 R710.
‡‡Not significant (NS).
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that reflectance centered on 550 nm and 710 nm yielded
some of the best relationships with N deficiency in corn.
The best relationship between IR/R, Stress1, and Stress2
vegetation indices when regressed against visual quality
was observed during 2002. These results were similar
to those reported by Trenholm et al. (1999b) in a study
conducted on seashore paspalum and bermudagrass.
In comparison, NDVI, Stress1, and Stress2 produced
the strongest relationship with the N concentration in
2003, while yielding comparably weak results during 2002
(Table 2). Similar limitations in the consistency for NDVI
predictions of N concentration have been reported by
Bronson et al. (2005) in cotton grown under varying N
rates. The strength of a remote sensing system will be
judged by its reliability throughout the growing season.
Basing management decisions on NDVI would require
recalibration of themodel for each sampling date against a
well-fertilized control to ensure reliable results (Bronson
et al., 2005). While this might be possible in turfgrass
management systems, it may not always be practical.
Analysis of the reflectance data by PLS regression

canopy reflectance data in 2002 and 2003 yielded better
predictive tissue N concentration results based on max-
imum r2 and minimum SEP values than were observed
for the vegetation indices (Table 3). These results are
supported by those of Hansen and Schjoerring (2003)
who reported an improvement in prediction of N con-
centration through PLS regression when compared to
NDVI in winter wheat (Triticum aestivum L.). Similarly,
Bronson et al. (2005) compared PLS to NDVI in pre-
dicting the N concentration of cotton and reported an
improvement using PLS regression. The results for the
PLS regression in 2003 indicate a slightly weaker re-
lationship between the actual and predicted N con-
centration in the tissue than was observed during 2002
(r2 5 0.71 vs. 0.95) (Table 3, Fig. 3). This may be
explained by reduced uniformity in plot quality that
resulted from localized dry spots that were present in
several of the plots for a limited amount of time in 2003.

In comparison to the other vegetation indices evaluated
in this study, PLS regression yielded a stronger rela-
tionship between the actual and predicted N concentra-
tion across all dates in 2002 and 2003, indicating the
potential benefit in using it to develop models for future
remote sensing systems.

Results of PLS regression did not indicate a relation-
ship between the actual and the predicted chlorophyll
concentration in the plant tissue using reflectance data
in 2002 or 2003 (Table 3). These results were not ex-
pected considering the broad range in chlorophyll con-
centrations that were observed in the tissue during
2002 and 2003 (Table 1). We hypothesize the N defi-
ciency symptoms that resulted from the N treatments,
which resulted in the presence of a thin stand and ne-
crotic tissue, masked the influence of chlorophyll con-
centration by significantly altering the spectral patterns
of the plants when analyzing reflectance across a large
number of wavelengths.

The results from this study indicate the potential for
using PLS regression in the development of models for
predicting the N status of creeping bentgrass. In com-
parison to other spectral analysis methods such as
NDVI, PLS was able to accurately predict the N con-
centration of the tissue during both growing seasons
while the results for NDVI were variable between years.
While the results of this study are promising, more
research is needed to determine if PLS regression

Table 3. Partial Least-Squares (PLS) regression statistics for esti-
mation of N concentration, chlorophyll concentration, biomass
production, and visual quality for creeping bentgrass in Ames,
IA, during 2002 and 2003. Results include data from five
sampling dates in 2002 (N5 60) and four sampling dates in 2003
(N 5 48).

Calibration
No. of
factors†

Regression
coefficient (r 2) SEP‡

2002

N concentration, g kg21 8 0.95 1.51
Biomass production, g m2 d21 5 0.56 0.80
Chlorophyll concentration,
mg kg21

6 0.12 66.59

Visual quality 3 0.76 0.71
2003

N concentration, g kg21 4 0.76 2.85
Biomass production, g m2 d21 3 0.64 0.66
Chlorophyll concentration,
mg kg21

2 0.02 98.72

Visual quality 2 0.65 0.90

†The number of factors necessary to achieve a minimum global standard
error of prediction for the final partial least-squares regression model.

‡ Standard error prediction (SEP), the average difference between the actual
values and predicted values of samples not used to develop the equation.

Actual Tissue N, g kg-1
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Fig. 3. Predicted versus actual tissue N concentration for all data col-
lected in 2002 and 2003 from creeping bentgrass (Agrostis stolonifera
L.) obtained using partial least-squares regression to relate spectral
reflectance data in the visible/near-infrared wavelength range to the
reference tissue N concentration values. The graphed line represents
a 1:1 relationship. SEP, standard error of prediction.
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models are able to distinguish N deficient turfgrass plots
from those subjected to other plant stresses. Successful
development of a remote sensing system capable of
accurately identifying nutrient deficiencies may make
it possible to base fertilizer applications on analysis of
canopy reflectance data without calibrating against tra-
ditional plant analysis results, which in turn would allow
for immediate correction of nutrient deficiencies.
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