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INTRODUCTION

Remote  sensing  and biogeochemical  modeling 
share a highly complementary nature, which has 
led  to  a  growing  number  of  applications  that 
involve  some degree  of  coupling  between the 
two.   Whereas  remote  sensing  represents  the 
only means by which landscape and vegetation 
properties  can  be  sampled  over  large  and 
contiguous  portions  of  the  Earth’s  surface, 
models focus on the underlying biogeochemical 
processes that regulate the flow and storage of 
water,  carbon  and  nutrients,  often  over  much 
longer  time  scales  than  can  be  considered 
through remote  sensing  alone.   The  aims  and 
goals  of  biogeochemical  modeling  are  wide 
ranging and include studies of carbon (C) and 
water  cycling,  analyses  of  nitrogen  (N) 
enrichment and leaching to aquatic ecosystems, 
and  trace  gas  transfers  from  soils  to  the 
atmosphere.   Biogeochemical  models  are  also 
used  as  part  of  larger,  integrated  modeling 
environments of regional and global biosphere-
atmosphere  interactions,  biogeography,  and 
climate change (e.g., Sellers et al. 1997, Cramer 
et  al.  2001).   More  recently,  biogeochemical 
modeling has taken a  role  in decision support 
for  conservation,  management  and  policy 
development (Potter et al. 2006).

Remote  sensing  can  provide 
biogeochemical  models  with  information  on 
vegetation type, leaf area index (LAI), canopy 
height,  the  fraction  of  absorbed 
photosynthetically  active  radiation  (fPAR), 
light-use  efficiency  (LUE),  leaf  N 
concentration,  pigments and other biochemical 
compounds  to  simulate  plant  growth  and 
mortality.  Other remote sensing-related inputs 
have  included temperature,  precipitation,  solar 
radiation  levels,  and  soil  moisture.   In  this 
chapter,  we  review  a  number  of  approaches 
through  which  remote  sensing  data  can  be 
applied to the detection of vegetation properties, 
and  discuss  the  tradeoffs  of  various  methods 
with  respect  to  biogeochemical  modeling. 
Given  the  breadth  of  the  topic,  our  goal  in 
preparing  this  chapter  was  not  to  provide  a 
working  manual  of  all  remote  sensing-model 

integration  methods  available.   Instead,  we 
sought  to  summarize  important  overall 
strategies  for  vegetation  detection  into  a 
framework  that  involves  the  types  of 
instruments used, the ecological properties they 
can  be  designed to  detect,  and  the  manner  in 
which  those  properties  can  be  utilized  by 
models.  

MODELS UTILIZING REMOTE SENSING

This section provides a brief overview of major 
categories  of  ecosystem  biogeochemistry 
models that can be driven or guided by remote 
sensing.   In  the  interest  of  simplicity,  we 
describe  each  type  of  model  as  being  distinct 
from one another, but readers should be aware 
that  the  boundaries  between  them  are  often 
blurry, and hybrid approaches are also available.
Simple Empirical Models
The  simplest  type  of  remote  sensing/model 
linkage  consists  of  a  small  number  of 
empirically  derived  algorithms  that  combine 
field-based  relationships  with  remotely  sensed 
vegetation properties that correlate strongly with 
some  aspect  of  ecosystem  behavior.   For 
example,  Ollinger  et  al.  (2002a)  used imagine 
spectroscopy  to  detect  leaf  lignin  to  nitrogen 
ratios  in  temperate  forests,  which  provided  a 
direct connection to decomposition, C:N ratios 
and  N  cycling  rates  in  soils.   When  such 
relationships are available, this approach offers 
a straightforward means of producing estimates 
that  are  constrained  to  known  patterns.   The 
resulting  accuracy  is  dependent  only  on  the 
strength  of  the  observed  trends  and  on  the 
accuracy  of  the  vegetation  property  estimates. 
The  principal  disadvantage  is  that  these 
approaches include no mechanisms that would 
allow  extrapolation  in  time  or  under  varying 
environmental conditions.
Light Use Efficiency Models
Of  intermediate  complexity  are  the  light-use 
efficiency (LUE) models, also called production 
efficiency models  (PEM),  which  use  remotely 
sensed  fPAR  to  estimate  maximum carbon  C 
assimilation rates and then adjust for suboptimal 
climate  conditions,  using  a  series  of  simple 
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climate  response  algorithms.   These  models 
have  evolved  from  the  original  arguments  of 
Monteith (1972) that the amount of carbon fixed 
per unit of incident radiation can be used as an 
organizing  principle  for  estimating  overall 
vegetation productivity.  There are now a large 
number  of  efficiency  models  which  differ  in 
their details and complexity, but all derive from 
the  idea  that  knowledge  of  incident  radiation 
and the light-absorbing properties of  the plant 
canopy  can  determine  the  maximum potential 
photosynthesis  for  that  canopy  (Potter  et  al. 
1993,  Field et  al.  1995,  Running et  al.  2000). 
Nearly  all  applications  of  efficiency-type 
methods are based on the idea that the rate of C 
accumulation  by  plants  (P)  depends  on 
environmental  and  biochemical  factors  in  the 
following way:

P (NPP or GPP) = fPAR  x  PAR  x  ε* 
x  W  x  T (1)

where  PAR  is  the  downwelling 
photosynthetically active radiation at the top of 
canopy,  ε*  represents  the  maximum 
photochemical  conversion  efficiency  of 
vegetation foliage under  optimal  conditions (g 
MJ-1),  and W and T are  dimensionless scalars 
(0-1) that down-regulate  ε* based on modeled 
water  and  temperature  stress,  respectively. 
Production  efficiency  models  are  particularly 
appealing for large-scale analyses because of the 
availability  of  absorbed  PAR  estimates  from 
multi-spectral  sensors,  and  because  ε* is  both 
conceptually  straightforward  and 
physiologically  meaningful.   However,  a 
persistent  challenge  has  been  the  lack  of 
understanding  concerning  factors  controlling 
variation  in  ε*  both  within  and  among 
vegetation types (e.g. Gower et al. 1999). 
Ecosystem Process Models
Of  greatest  complexity  are  ecosystem process 
models, which use remote sensing primarily to 
initialize  important  vegetation  input  variables 
and then simulate ecological processes—such as 
photosynthesis,  C  allocation,  respiration, 
litterfall,  decomposition,  and water balances—
that  affect  ecosystem  behavior.   The  added 

complexity  in  these  models  allows  them  to 
predict  a  range of  additional  variables,  and to 
examine  responses  to  environmental  factors 
such as rising CO2, atmospheric pollution, and 
physical  disturbance.   Because  they  are  often 
designed to be run over longer time scales, they 
are  more  suitable  for  considering  changes  in 
ecosystem  components  such  as  soil  C  and 
nutrient  pools  that  have  very  long  turnover 
times.  

Independent  of  the  application, 
ecosystem process models often require a large 
number of parameters, measured in the field or 
via  remote  sensing,  or  from  a  cumulative 
knowledge  based  on  the  literature  (Figure  1). 
Some  models,  such  as  Century  (Parton  et  al. 
1988a, 1998b) and PnET-CN (Aber et al. 1997, 
Ollinger  et  al.  2002b)  require  more  than  30 
input parameters needed to simulate the growth 
and  mortality  of  plants,  and  the  subsequent 
accumulation  and  turnover  of  soil  organic 
matter  (SOM)  and  nutrients  (Table  1). 
Although  many  of  these  models  were  not 
originally  designed  to  ingest  remotely  sensed 
data,  they can greatly benefit  from the use of 
remote  observations  to  constrain  simulated 
processes.  Other models, such as the Carnegie-
Ames-Stanford Approach (CASA; Potter et al. 
1993, Field et al. 1995) were designed to be run 
with  fewer  parameters,  emphasizing  those 
which  can  be  routinely  retrieved  via  remote 
sensing.  Some of these models represent hybrid 
approaches  between  efficiency  and  process-
based models, whereby estimates of fPAR and ε
*  are  linked  with  algorithms  describing  more 
complex biogeochemical  processes.    To date, 
these  models  use  remotely  sensed  data  to 
constrain  simulated  rates  of  photosynthesis, 
plant  growth,  evapotranspiration,  and  other 
plant-related processes.  Other more specialized 
models, such as TerraFlux (Asner et al. 2001), 
use  remotely  sensed  data  to  simulate  nutrient 
flows between plants and soils.

ECOSYSTEM  PROPERTIES  FROM 
REMOTE SENSING
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Vegetation Type
Vegetation  type  is  one  of  the  most  basic  yet 
important remote sensing products required by 
many biogeochemical models (Table 2).  This is 
particularly true when the models are run in a 
spatially-explicit  mode  at  regional  to  global 
scales.   At  a  minimum,  the  models  require 
vegetation  classifications  such  as  broadleaf 
deciduous trees, needleleaf evergreen canopies, 
and  shrub  (e.g.,  Running  et  al.  1993,  1994, 
Bonan  1995).   This  information  is  critical  to 
setting  up  model  parameterizations  related  to 
physiological,  biochemical,  and  structural 
properties  that  ultimately  affect  growth, 
mortality,  and  decomposition  of  plants.   For 
example,  the  lifespan  of  temperate  deciduous 
and coniferous  trees often differ,  and thus the 
timing  and  rate  of  foliage,  wood,  and  root 
mortality  affects  C  losses  to  the  atmosphere. 
Similarly,  the decomposability of plant  tissues 
varies by vegetation type, and thus a vegetation 
map  is  needed  to  ultimately  parameterize 
decomposition  rates  spatially  in  a 
biogeochemical model.  Vegetation type is thus 
a  key  entry  point  for  remote  sensing  into  the 
models.

Plant Physiology and Growth
Vegetation type is also important for setting up 
basic  model  parameters  associated  with 
photosynthetic  rates,  stomatal  conductance, 
light-use efficiency and carbon allocation, all of 
which  directly  impact  gross  and  net  rates  of 
primary production (GPP, NPP; Table 2).  For 
example, variables such as leaf retention time or 
maximum photosynthesis per unit light intensity 
might  be  defined  as  a  function  of  vegetation 
type  where  more  explicit  information  is  not 
available (Ollinger et  al.  1998, Bondeau et  al. 
1999).  This and other vegetation and ecosystem 
parameters  are  often  derived  from  a  look-up 
table organized by vegetation type (Sellers et al. 
1995). 

With  the  advent  of  high  temporal 
resolution,  global  remote  sensing  instruments 
such  as  the  Advanced  Very  High  Resolution 
Radiometer (AVHRR) and the Terra Moderate 
Resolution  Imaging  Spectrometer  (MODIS), 
monitoring  of  vegetation  properties  directly 

related  to  physiology,  phenology,  and  growth 
became  commonplace.   The  basis  for  using 
these sensors rests in the field-based knowledge 
that  fPAR, LAI and several vegetation indices, 
such as the NDVI, are positively inter-correlated 
(Myneni et al. 1997).  The ability to detect fPAR 
in  this  manner  was  quickly  incorporated  in 
light-use efficiency models to predict GPP and 
NPP, although the resulting need for estimates 
of  ε represents  a  difficult  and  ongoing 
challenge.  Some models select a constant value 
for  ε, or set it by vegetation type (Potter et al. 
1993, Running et al. 2000).  Field et al. (1995) 
argue that  a  moderately  dynamic  ε caused by 
climatological  stress  factors  should  be  more 
realistic.  Other field-based and remote sensing 
studies  have  subsequently  highlighted  the 
variability  of  light-use  efficiency  at  local  to 
regional scales (Lobell et al. 2002, Turner et al. 
2003).  Nonetheless, modeling of GPP and NPP 
dynamics has remained most closely tied to the 
temporal variation in fPAR and LAI.

Thus  far,  the  derivation  of  remotely 
sensed LAI and  fPAR has  mostly  relied upon 
optical vegetation indices such as the NDVI, but 
other methods based on canopy gaps, structure, 
and  the  probability  of  light  penetration  are 
gaining  momentum.   This  latter  group  of 
methods  benefits  especially  from  multi-view 
angle  (MVA)  or  light  detecting  and  ranging 
(LiDAR)  observations that can determine inter- 
and  intra-crown  gaps  related  to  LAI  and  leaf 
biomass (Means et al. 1999, Zhang et al. 2000). 
These  approaches  are  still  novel  since  neither 
the  data  nor  processing  methods  are  as 
accessible  to  non-experts  as  are  optical 
vegetation indices, but the potential use of these 
structurally-sensitive remote sensing approaches 
could change the way biogeochemical and land-
surface  models  are  designed and implemented 
(Asner et al. 1998).

Although  the  NDVI- fPAR  -NPP 
connection  has  been  utilized  to  explore  the 
spatial and temporal dynamics of plant growth 
and  carbon  uptake  globally  (e.g.,  Field  et  al. 
1998), other local-to-regional scale studies have 
demonstrated  considerable  variation  in  LUE, 
prompting  a  number  of  more  detailed  studies. 
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In one example, a meta-analysis by Green et al. 
(2003) compiled published values of  ε∗ and a 
variety  of  leaf  and  canopy-level  traits  from a 
wide array of C3 plant communities, including 
deciduous  and  evergreen  tree  species,  and 
herbaceous species consisting of grasses, forbs, 
and legumes.  Their results showed that most of 
the  variation  in  ε∗ could  be  related  to  mass-
based concentrations of N in foliage, suggesting 
a  link  with  leaf-level  photosynthetic  capacity 
and  models  that  include  canopy  N  as 
determinants  of  C  assimilation.   Aber  et  al. 
(1997)  and  Ollinger  et  al.  (2002b)  developed 
and  explored  linkages  between  leaf  N  and 
photosynthetic  capacity  in  their  model  PnET. 
They  found  leaf  N  to  be  one  of  the  most 
important  predictors  of  growth  rates,  and 
eventually  incorporated  remotely  sensed 
estimates  of  canopy  N  to  provide  a  spatially 
explicit  understanding  of  NPP  in  temperate 
forests (Figure 2).  Their  approach focuses on 
airborne and space-based imaging spectroscopy, 
along with partial least squares (PLS) regression 
analysis,  to  estimate  canopy  N  at  fine  to 
moderate spatial resolution.  Retrieval of canopy 
N  from  sensors  such  as  the  NASA  Airborne 
Visible  and  Infrared  Imaging  Spectrometer 
(AVIRIS)  has  become  routine  in  forested 
ecosystems,  where  canopy  cover  is  high,  and 
when shadowing is minimal, although the small 
scene  size  and  limited  data  volume  have 
prevented more widespread application of  this 
approach.  

Leaf N provides one important window 
into the physiological functioning of canopies, 
but leaf pigments are another common approach 
to  remote  estimation  of  plant  function. 
Chlorophyll  concentration  has  been  a  core 
remote  sensing  target  in  many  studies  (e.g., 
Yoder  and  Waring  1994,  Zarco-Tejada  et  al. 
2001) and has been used to estimate annual rates 
of biomass production and carbon exchange in 
agricultural  systems  (Gitelson  et  al.  2005, 
2006),  but  few  biogeochemical  models  have 
been  designed  to  explicitly  incorporate 
chlorophyll measurements.  Gamon et al. (1990) 
took a  major  step  toward  remote  detection  of 
xanthophyll-cycle  pigments  that  may  directly 

express the LUE of plants.  They developed the 
Photochemical  Reflectance  Index  (PRI)  to 
estimate leaf and top-of-canopy LUE, and many 
have since used the PRI to  understand spatial 
and  inter-specific  variations  in  LUE  among 
plants  (reviewed by Ustin  et  al.  2004).   Only 
recently, however, has the PRI been used in a 
biogeochemical model.  Asner et al. (2004) used 
Earth Observing-1 Hyperion hyperspectral data 
to  compute  the  NDVI  and  PRI  of  tropical 
rainforest  canopies  in  the  Brazilian  Amazon. 
They  found  that  the  NDVI  lacked 
responsiveness  to  canopy  drought  conditions 
that were leading to NPP declines, and this was 
caused by saturation of the NDVI in the high 
LAI  canopies  found  in  the  central  Amazon 
basin.  However, the PRI, which expresses top-
of-canopy  leaf  pigment  concentrations,  did 
account for about 20-25% of the field-observed 
decreases in plant production.  Moreover, they 
found  that  remote  sensing  metrics  of  canopy 
water  content,  which  penetrate  deep  into  the 
tropical forest canopies, were highly sensitive to 
NPP declines.  Using the PRI and hyperspectral 
indices  of  canopy  water,  they  modeled  these 
NPP decreases with a new version of the CASA 
model, demonstrating that drought periods could 
be detected in the tropical forest canopy, and the 
effect incorporated into a biogeochemical model 
(Figure 3).  

Beyond the current hyperspectral metrics 
for  the  major  pigment  groups  such  as 
chlorophylls and carotenoids, there is a growing 
effort  to  understand  how  less  abundant  but 
functionally important leaf compounds, such as 
phenolics,  might  be  remotely  sensed. 
Secondary  compounds  provide  information 
pertinent  to  plant  physiology,  leaf  herbivory, 
and  a  variety  of  other  processes  pertinent  to 
biogeochemical models.  To date, we know of 
no models that incorporate remotely sensed (or 
field-measured)  estimates  of  secondary  plant 
compounds,  so  this  is  an  area  ripe  for 
exploration.

Phenology  and  litterfall  are  two 
additional  variables having a  major impact on 
the C, water and nutrient fluxes of ecosystems. 
The timing and amount of litterfall is a central 
determinant  of  CO2 emissions  via  microbial 
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decomposition processes.  AVHRR and MODIS 
timeseries  of  the  NDVI  have  been  used  to 
observe  seasonal  and  inter-annual  changes  in 
phenology,  and  to  estimate  rates  of  litterfall 
production (White et al. 1997).  These estimates 
have  subsequently  been  used  to  simulate  C 
flows from live to detrital pools in the models 
(Keyser et al. 2000).  Such efforts have shown 
that  phenology  exerts  major  control  over  the 
seasonal  cycle  of  CO2 concentrations  in  our 
atmosphere (Sitch et al. 2003).
Carbon and Nutrient Storage
Growth, phenology and litterfall are all directly 
related  to  the  flow  of  C,  nutrients  and  water 
within  ecosystems.   These  processes  are  also 
related  to  C  and  nutrient  storage,  although 
indirectly.  Storage is a function of inputs and 
outputs, and thus the flows of materials dictate 
the  standing  stock  at  any  given  time. 
Historically,  remote  sensing  has  addressed  C 
and nutrient  flows in  plants  more so than  the 
standing  stocks.   Recently,  however,  new 
remote sensing technologies and techniques are 
gaining  access  to  a  more  direct  mapping  of 
aboveground C and nutrient  storage.   First,  in 
many environments the fractional cover of live 
and senescent or dead vegetation is a principal 
determinant of aboveground C stocks.   At  the 
global  scale,  DeFries  et  al.  (1999,  2000)  used 
fractional  canopy  cover  from  the  MODIS 
Vegetation Continuous Fields (VCF) product to 
simulate  changing  C  stocks  and  biochemical 
fluxes.   They  showed  that  fractional  cover 
changes  exert  a  major  influence  on  the  C 
dynamics  of  terrestrial  ecosystems  worldwide. 
At  regional  scales,  detailed  mapping  of 
fractional canopy cover can be closely related to 
aboveground C stocks in shrublands, savannas 
and open woodlands (Asner et al. 2005a).

In  forested  ecosystems  without  major 
disturbances  or  canopy  openings,  fractional 
cover  does  not  always  provide  sufficient 
information for modeled C and nutrient stocks. 
Other  techniques,  such  as  from LiDAR,  fine-
scale optical (e.g. IKONOS), synthetic aperture 
radar  (SAR),  and  multi-view  angle  passive 
optical remote sensing (MVA) provide canopy 
structural  information  that  can  be  used  to 
estimate  C  storage  (reviewed  by  Wulder  and 

Franklin 2003).  For example, both LiDAR and 
interferometric  SAR  provide  detailed 
information on  tree  canopy height  and profile 
that  can  be  combined  with  field-based 
allometric  equations  to  map  aboveground 
biomass  and  C  storage  (Lefsky  et  al.  2002, 
Treuhaft  et  al.  2003).   To  date,  only  a  few 
models  can  ingest  this  information  directly 
(Hurtt  et  al.  2004),  but  the  straightforward 
nature of height-based allometrics should make 
this  a  more  common  approach  as  remotely 
sensed  canopy  height  estimates  become  more 
widely available.   Future model  developments 
will  make  increased  use  of  remotely  sensed 
vegetation structure that is related to C storage.

In  parallel  with  carbon,  the  nutrient 
stocks  of  canopies  can  be  estimated  and/or 
modeled when information pertaining to stand 
structure,  aboveground  biomass  and  tissue 
nutrient  concentrations  are  available.   In 
situations  where  nutrient  concentrations  are 
relatively invariant within functional groups (as 
in  needleleaf  evergreen  species  or  desert 
shrubs),  this  can  be  achieved using a  look-up 
table  approach that  combines  remotely  sensed 
canopy structure (biomass) and vegetation type 
with known nutrient levels in foliage and wood. 
However, there are many  cases where greater 
variation in plant tissue stoichiometry require a 
more  direct  means  of  detecting  foliar  nutrient 
concentrations, such as through use of imaging 
spectroscopy.   For  example,  in  temperate 
deciduous  forests,  variation  in  soil  type, 
disturbance history and atmospheric deposition 
can  lead  to  a  wide  range  of  leaf  N 
concentrations  both within and among species 
(Ollinger  et  al.  2002a,  McNeil  et  al.  2005). 
Where  nitrogen-fixing  trees  are  present, 
detection  of  their  location  and  abundance  is 
important because they typically have far higher 
N:C ratios than do non-fixing species.  Finally, 
the  nutrient-to-carbon  ratios  of  foliage  among 
humid tropical  tree species are  typically  more 
variable  than  is  found  in  other  biomes 
(Townsend et al. 2007).  This translates to much 
greater uncertainty in biogeochemical modeling 
studies  of  tropical  forests,  unless  direct 
detection  of  nutrient  concentrations  in  canopy 
foliage can be achieved.
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High spatial resolution data and/or sub-
pixel fractional cover algorithms are starting to 
provide  information  on  tree-fall  gaps  and 
dynamics (Asner et al. 2005b) that are important 
to  a  class  of  biogeochemical  models  that 
incorporate  gap-phase  processes  in  forests 
(Moorcroft et al. 2001).  These models require 
spatially  explicit  (or  statistically  sound) 
information  on  the  rate  of  gap  formation, 
closure,  and  regrowth  to  simulate  the  light 
environment  as  well  as  C  fluxes  and  storage. 
Progress  in  sub-pixel  unmixing  (spectral 
mixture  analysis)  with  both  hyperspectral  and 
multispectral  optical  imagery is opening doors 
for mapping forest canopy gap fraction.  As the 
remote  sensing  technologies  and  analytical 
techniques  mature  over  time,  the 
biogeochemical  models  will  follow with more 
detailed integration of the observations, thereby 
supplanting  the  need  for  statistical 
parameterizations based purely on field data that 
is offset geographically or temporally from that 
of the modeling study.

Evapotranspiration
Plants  and  soils  mediate  the  hydrology  of 
ecosystems.   Plant  canopies  intercept 
precipitation,  and  a  fraction  of  this  water  is 
subsequently  lost  to  the  atmosphere  via 
evaporation.   Soils  intercept  remaining 
precipitation,  and  either  lose  moisture  to 
evaporation or ground water flow.  However, a 
major fraction of soil water is taken up by the 
vegetation to support stomatal conductance for 
photosynthetic function.  Water is thus lost via 
transpiration,  and  this  flux  is  a  major 
determinant of ecosystem hydrology (Dickenson 
1991).

Evapotranspiration (ET) is a function of 
canopy  cover,  LAI,  roughness,  wind  speed, 
energy  exchange,  and  other  factors  (Table  2). 
ET  is  also  related  to  the  residual  energy 
exchanged between the canopy and atmosphere 
after taking into account net radiation, sensible 
heat exchange, and ground heat flux.  Both of 
these perspectives defining ET lead to methods 
by which this important process is estimated in 
biogeochemical models.  Some models simulate 
ET based  on  canopy and micrometeorological 

parameters (e.g., Sellers et al. 1997).  Methods 
such  as  the  two-source  resistance  model 
(Lhomme et al. 1994a,b), utilize LAI, vegetation 
height  and  aerodynamic  resistance  to  simulate 
sensible  and  latent  heat  exchange,  and  thus 
evapotranspiration.   Other  models  rely  on 
micrometeorological  measurements  alone,  and 
do not directly incorporate vegetation structural 
properties (e.g., Kustas et al. 1990).

For those ET modeling approaches that 
rely on vegetation properties, canopy cover and 
LAI  can  be  estimated  from optical  and  other 
remotely  sensed  imagery.   However,  canopy 
roughness and derived canopy resistance remain 
difficult to quantify (Shoshany 1993).  Roberts 
et al. (2004) recently estimated canopy rugosity 
–  a  metric  of  roughness  –  using  airborne 
hyperspectral imagery.  Others have used more 
explicit  structural  remote  sensing  technologies 
such as radar and LiDAR to understand canopy 
roughness (Lefsky et al. 2002).

Another  approach  to  estimating  ET 
utilizes  the  visible,  near-infrared,  and  thermal 
imaging data provided by aircraft  and satellite 
sensors to  estimate energy exchanges between 
the land surface and atmosphere (e.g., Engman 
1991,  Kustas  et  al.  1996).   This  approach 
affords  a  means  to  bypass,  at  least  to  some 
degree,  any  need  to  explicitly  estimate 
vegetation structural  properties.   For  example, 
Bastiaanssen et al. (1998, 2002) developed the 
Surface  Energy  Balance  Algorithm  for  Land 
(SEBAL) to estimate a complete radiation and 
energy balance, including resistances for water 
vapor, heat and momentum.  The primary input 
to  this  model  is  broadband  radiance 
observations from Landsat, MODIS and similar 
sensors.  Independent of the precise approach, it 
has long been argued that remote sensing is the 
only  technology  that  can  deliver  the  suite  of 
radiative  and  vegetative  parameters  needed  to 
estimate ET in a consistent manner at regional 
to global scales (Choudhury 1988).

CHALLENGES  IN  USING  REMOTE 
SENSING  FOR  BIOGEOCHEMICAL 
MODELING
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We have highlighted the major remote sensing 
measurements used in terrestrial biogeochemical 
models,  and  we  described  how  these 
measurements constrain simulations of C, water, 
and  nutrient  cycling.   The  models  are  often 
complex, with many parameters that cannot be 
directly constrained with remote sensing (Figure 
1).  On the other hand, a set of key variables, 
such as LAI, fPAR and nitrogen concentrations, 
can be remotely estimated, and these vegetation 
properties  have  far-reaching  control  over  a 
range  of  ecosystem  processes  (Sellers  1985, 
1987).

The  challenge  remains  to  improve  the 
remote sensing estimates, but also to find how a 
broader  suite  of  model  parameters  co-vary  in 
nature as a way to extend the power of remote 
sensing  controls  (or  reality  checks)  in 
simulations of biogeochemical cycles.  Leaf N is 
a good example of this issue.  Leaf N is one of 
the  most  important  descriptors  of  canopy 
function, and it is highly correlated with a range 
of plant properties such as leaf mass per area, 
leaf lifespan and photosynthetic capacity (Reich 
et  al.  1997,  Wright  et  al.  2004).   These 
parameters, in turn, are tightly linked to canopy 
light  capture  (e.g.,  fPAR),  plant  growth  rates, 
turnover, and decomposition (Aber and Melillo 
1991).   Leaf  N  is  thus  a  major  target 
measurement  in  remote  sensing  for 
biogeochemical research (e.g.,  Wessman et  al. 
1988, Martin and Aber 1997).  However, despite 
nearly two decades of research, remote sensing 
of  leaf  N  remains  challenging  because  the 
physical basis for N retrievals is not clear and 
because remote sensing data needed to retrieve 
N are not available over broad spatial scales.  N 
is expressed in chlorophyll in the visible (400-
700  nm)  region,  and  in  proteins  in  the 
shortwave-infrared  (1500-2300  nm)  range 
(Curran 1989).  A hyperspectral remote sensing 
signature of a forest canopy is, however, equally 
or more sensitive to canopy architecture than it 
is to leaf chlorophyll and proteins (Asner 1998). 
Nonetheless, leaf N can be estimated remotely 
using empirical techniques, such as partial least 
squares  (PLS)  regression,  which  does  not 
resolve the contribution of  leaf  chemistry  and 
canopy  structure  to  the  spectral  measurement 

(e.g.,  Smith  et  al.  2002,  2003).   This  fact 
suggests  strong biophysical  covariance  of  leaf 
and canopy properties in a reflectance spectrum, 
and this covariance is precisely what is needed 
to  improve  strength  of  remote  sensing 
constraints  over  modeled  processes.   In  this 
way,  remote  sensing  and  biogeochemical 
modeling require the same, ecological approach 
to increase both the accuracy and breadth of the 
measurements and simulations.   Sellers  (1985, 
1987) was one of the first to express this well in 
his  work  on  the  covariance  of  physiological 
processes  in  plants  with  respect  to  remotely 
sensed signatures.  Future work should continue 
to  expand  these  connections,  and  to  seek 
broader  inter-relationships  between  remotely 
sensed and modeled properties of ecosystems.

A  second  need  in  remote  sensing-
modeling  research  is  to  address  the  inherent 
temporal  and  spatial  mismatch  of  the 
observations  and  the  simulated  processes. 
Remotely  sensed  parameters  are  often 
temporally  sparse,  but  spatially  rich.   In 
contrast,  biogeochemical  models  require 
continuous time-series calculations of pertinent 
fluxes, but the complexity of the models often 
precludes a pixel-by-pixel simulation approach 
when high spatial  resolution is  required.   One 
major  research  area  focuses  on  the  use  of 
remotely sensed data in model-data assimilation 
(e.g.,  Bach  and  Mauser  2003,  Rayner  et  al. 
2005).   Data  assimilation  involves  a  suite  of 
approaches  including:  (1)  model  initialization 
from remote sensing data (e.g. land cover type), 
(2)  update  of  model  state  variables  through 
remote  sensing  (e.g.  LAI),  (3)  remote sensing 
parameter  adjustment  through  model 
recalibration  (e.g.  leaf  N  concentrations),  and 
(4) estimation of model state variables through 
model inversion (e.g. fPAR) (Bach and Mauser 
2003, Zhang et al. 2006).    

Data  assimilation  also  facilitates  the 
integration  of  multi-temporal  remotely  sensed 
parameters  from  differing  spatial  sampling 
schemes (e.g.  Landsat  land-cover  and MODIS 
phenology) into a biogeochemical and/or land-
surface  modeling  environment.   These 
approaches  allow  for  temporally  sparse  and 
spatially  detailed  observations  to  be  ingested 
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into  continuous  modeling  streams,  thereby 
adjusting model trajectories through time.  One 
problem  in  doing  this,  however,  is  that  high 
frequency changes in vegetation properties (e.g. 
canopy  pigments  and  physiology)  may  be 
missed, since neither the models nor the remote 
sensing data would capture these changes.  On 
the  other  hand,  model-data  assimilation 
approaches  tend  to  constrain  the  “solution 
space”  of  current  models  to  a  relatively  tight 
degree,  thereby  decreasing  uncertainty  of 
simulated  processes  over  time.   Nonetheless, 
this  research  area  continues  to  challenge  both 
the remote sensing and modeling communities, 
and will require further attention as the sensors 
systems and models evolve in the future.

Finally, it seems that there has been slow 
recent  growth  in  the  area  of  remote 
sensing/model integration.  Early on, there were 
rapid  advances  in  the  use  of  remotely  sensed 
data from AVHRR and MODIS-like sensors in 
land-surface  and biogeochemical  models  (e.g., 
Running et al. 1993, Potter et al. 1993, Sellers et 
al. 1997).  As discussed, vegetation type, cover, 
LAI and fPAR were readily incorporated into a 
class  of  production-efficiency  models  born 

during the 1980s-1990s.  Since then, however, 
only  a  few models  have  expanded  the  list  of 
remotely sensed parameters, mainly in the area 
of 3-D structure (e.g., Hurtt et al. 2004, Huang 
et al. 2005).  However, today we have a range of 
airborne  and  space-based  observations  of 
canopy  properties  that  have  yet  to  be  fully 
incorporated into the terrestrial models.  The use 
of  canopy  height  information,  in  particular, 
represents  an  underutilized  opportunity  for 
modelers, in that making use of these data can 
require  no  more  than  the  addition  of  simple 
allometric equations relating height to biomass. 
Such  equations  are  commonly  available  from 
field observations and could be added to some 
models with minimal restructuring.  In a sense, 
the  modeling  community  is  not  keeping  pace 
with remote sensing developments,  or  at  least 
has not begun utilizing them fully,  and thus a 
challenge  for  the  modeling  community  is  to 
develop  appropriate  constraints  in  simulations 
using the newest portfolio of observations now 
available from remote sensing.  Future studies 
and programs should place emphasis on the co-
evolution  of  these  complimentary  research 
areas.
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Table 1.  Common biogeochemical models and the types of remote sensing observations currently used to constrain them.

Model Remote Sensing Constraints References

CENTURY Vegetation Type Parton et al. 1988a, 1998b

Biome-BGC Vegetation Type, LAI, fPAR Running and Hunt 1993, 
Running et al. 1994

PnET-II, PnET-CN Vegetation Type, Leaf N Aber and Driscoll 1997, 
Ollinger and Smith 2005

CASA-1 Vegetation Type, fPAR Potter et al. 1993,
Field et al. 1995

CASA-3D Vegetation Type, fPAR, LAI, Tree Height, 
Crown Dimensions, LUE

Huang et al. 2005

SiB Vegetation Type, fPAR, LAI, ET, Albedo Sellers et al. 1986, 1997

Table 2.  Remote sensing observations used to constrain terrestrial biogeochemical models.

Measurement Model Control Typical values Units

Vegetation Type Many processes related to growth, 
phenology, litterfall, and decomposition

Broadleaf evergreen forest, 
shrubs, C3 grasses

categorical

Fractional PAR 
Absorption

Light interception, GPP, NPP 0 to 100 percentages

Leaf area index Light interception, foliar C and nutrient 
stocks, GPP, NPP, ET, stress

0 to 8+ m2 foliage/m2 

ground

Leaf Pigments Light-use efficiency, GPP, NPP, stress Chlorophyll a+b, carotenoid 
concentrations

µg/cm2

Leaf Nitrogen Leaf N concentration, photosynthetic 
capacity, site fertility, decomposition

0.4 to 5+ percentages or 
per leaf area

Vegetation Height, 
Crown Dimensions

Aboveground biomass (via field-based 
allometrics), C stocks, tree mortality, 
forest succession

0.5 to 40+ meters
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FIGURE LEGENDS

Figure 1.  Despite the wide range of biogeochemical models available today, nearly all those that 
provide a spatially explicit rendering of ecosystem processes ultimately require geographic data 
from remote sensing.  Some models use only a few remotely sensed parameters, such as vegetation 
cover and type, whereas others employ information on physiological, biochemical and structural 
properties of vegetation derived from airborne and satellite remote sensing.  All models must 
balance the relative contributions of detailed spatial information from remote sensing with process-
oriented data and parameterizations stored in look-up tables.

Figure 2.  Remote sensing of canopy nitrogen provides a spatially-explicit and mechanistic means 
to constrain biogeochemical model simulations of photosynthesis, net primary production (NPP), 
and other ecosystem processes.  Here, the NASA Airborne Visible and Infrared Imaging 
Spectrometer (AVIRIS) was used to estimate leaf nitrogen concentrations throughout the Bartlett 
Forest in New Hampshire, USA.  The nitrogen maps were then used to constrain PnET model 
simulations of photosynthesis and NPP.  The resulting NPP maps were far more accurate than those 
derived simply by parameterizing leaf nitrogen from a look-up table based on vegetation type 
(Ollinger and Smith 2005).

Figure 3.  Remote sensing of leaf pigments and canopy water content provide new ways to simulate 
NPP in terrestrial ecosystems.  Here, the NASA Earth Observing-1 Hyperion satellite sensor was 
used to measure differences in leaf pigments, light-use efficiency, and canopy water content 
between two 1-ha rainforest stands in the central Amazon (upper left), where seasonal drought 
occurs (upper right).  One “dry-down” forest stand (d) was treated to remove ~80% of incoming 
rainfall (red dot, upper left), while a control stand was left unchanged (green dot, upper left; 
Nepstad et al. 2002).  Both stands underwent decreases in plant available water during the dry 
season, with the dry-down site experiencing a ~50% lower water availability than the control stand 
(upper right).  Hyperion observations of pigments, light-use efficiency, and water captured seasonal 
and inter-site differences in the ratio of NPP between dry-down and control sites (d:c), whereas the 
traditional NDVI-based modeling approach failed to do so.
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