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Remote sensing
tigations have shown that remote sensing of foliar nitrogen (N) concentration in
plant canopies can be achieved with imaging spectroscopy, or hyperspectral remote sensing, from satellite or
airborne sensors. Development of this approach has been fueled by recognition that foliar N is related to a
variety of ecological and biogeochemical processes, ranging from the spread of invasive species to the
ecosystem effects of insect defoliation events to patterns of N cycling in forest soils. To date, most studies
have focused on building site-specific foliar N detection algorithms applied to individual scenes or small
landscapes that have been intensively characterized with local field measurements. However, the growing
number of well-measured sites, combined with improvements in image data quality and processing methods
provide an opportunity to begin seeking more general N detection methods that can be applied to a broader
range of sites or to locations that lack intensive field measurements.
Here, we combine data from several independent efforts in North America, Central America and Australia, to
examine whether development of calibration methods to determine canopy nitrogen concentration across a
wide range of forest ecosystems is possible. The analysis included data from 137 individual field plots within
eight study sites for which imagery has been acquired from NASA's Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) and/or Hyperion instruments. The combined dataset was used to evaluate site-specific
calibration results as well as results obtained with data pooled across all sites. We evaluated the accuracy of
results using plot- and site-level cross-validation wherein individual plots or entire sites were withheld and
used as an independent validation of the resulting algorithms. In instances where all sites were represented
in the calibration, canopy-level foliar N concentration was predicted to within 7–15% of the mean field-
measured values indicating a strong potential for broadly applied foliar N detection. When whole sites were
iteratively dropped from the calibration and predicted by remaining data, predictions were still significant,
but less accurate (7–47% of mean canopy-level N concentration). This suggests that further development to
include a wider range of ecosystems will be necessary before cross-site prediction accuracy approaches that
seen in site-specific calibrations. Nevertheless, we view these results as promising, particularly given the
potential value of foliar N estimates, even at a reduced level of confidence, at sites for which there is no
possibility of conducting field data collections.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

Themass-based concentration of nitrogen in foliage is a key feature
of forest canopies that influences a variety of important ecosystem
processes. Foliar nitrogen (N) concentration is a primary regulator of
physiological processes such as photosynthesis and leaf respiration
(Evans, 1989; Field & Mooney, 1986; Reich et al., 1998, 2006) and is
related to canopy and stand-level traits such as light use efficiency,
.
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wood growth and net primary production (Green et al., 2003; Ollinger
& Smith, 2005; Smith et al., 2002) and soil factors such as litter quality,
decomposition and nutrient mineralization (Aber et al., 1990; Ollinger
et al., 2002; Scott & Binkley,1997). Spatial variation in foliar N is caused
by a combination of local factors such as tree species composition, soil
type and disturbance history (McNeil et al., 2005; Ollinger et al., 2002),
and regional- to continental-scale factors such as latitude, mean
annual temperature, nitrogen deposition and incident solar radiation
(Haxeltine & Prentice, 1996; McNeil et al., 2005; Yin, 1992). Temporal
variation can result from short-term changes in climate or disturbance,
or longer-term processes such as N deposition or plant exposure to
rising CO2 (Magill et al., 2004; Nowak et al., 2004).
or remote sensing of canopy nitrogen across a wide range of forest
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Given the importance of foliar N in ecosystem processes and the
complexity of predicting spatial patterns across a range of scales, it is
not surprising that effort has been directed towards methods of
detection using remote sensing. The ability to remotely sense foliar N
was first demonstrated soon after the advent of airborne imaging
spectrometers. Initial work in this field (Wessman et al., 1988) built
upon a history of laboratory spectroscopy in the field of agriculture
(Norris et al., 1996; Shenk et al., 1979; Williams et al., 1984), but
marked a shift from analysis of individual dried-ground samples to
multi-pixel analysis of fresh vegetation at the canopy level. During the
past two decades imaging spectrometers that have been developed
include the NASA Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS), the EO-1 Hyperion space-based instrument, and numerous
airborne commercial instruments. Using both AVIRIS and Hyperion,
investigators have recently been able to predict image-scale foliar
chemistry based on intensive plot sampling (Asner et al., 2006; Coops
et al., 2003; Martin & Aber, 1997; Ollinger et al., 2002; Smith et al.,
2002, 2003; Townsend et al., 2003;Wessman et al., 1988) and through
applications of advanced photon transport models that include
relationships between leaf reflectance properties and biochemical
constituents (Asner et al., 1998; Asner & Vitousek, 2005). In addition to
these individual-site studies, the work of Kokaly and Clark (1999) has
evaluated foliar nitrogen concentration with respect to dried-leaf
reflectance over a wide range of species using a continuum-removal
technique. Huang et al. (2004) has built upon this technique in their
analysis of eucalypt tree-level reflectance spectra.

Despite the potential power of canopy N detection with hyper-
spectral remote sensing, the number of applications has been limited
by data availability, difficulties associated with correcting for atmo-
spheric effects and the expense of field campaigns required for image
calibration for each individual scene. However, over the past 5–
10 years, there have been substantial improvements both in sensor
signal-to-noise ratios and methods for atmospheric correction. Over
that same time period, the number of field sites where foliar chemis-
try data and coincident imagery have been collected has grown
steadily. Subsequently, it is now possible to seek more generalized
canopy chemistry algorithms that can be applied across a range of
sites and remote sensing scenes. Development of a generalized and,
hence, more operational approach would expand both the scientific
user base and the ecological utility of the growing volumes of hyper-
spectral data that have become available. The focus of this paper is to
describe an effort to combine multiple image datasets from a wide
range of forest ecosystems in the development and validation of a
canopy foliar nitrogen concentration algorithm that will not require
image-specific plot data and calibration. In recent years, we have
acquired image and plot data for multiple datasets covering diverse
forested sites (mixed hardwood and conifer, tropical species), over a
wide geographic range (from northern New England to Northern
Florida, to Central America and Australia). These datasets have pro-
vided a unique opportunity to revisit the issue of developing a gene-
ralized foliar N prediction equation across a diversity of sites.

2. Methods

The analysis described in this paper was made possible through a
combination of datasets collected from 2001 to the present. Prior to
this effort, data were collected and analyzed for each site individually.
With this effort, we combine data from eight different sites with
consistent field data collections and image data from one of two
hyperspectral instruments.

2.1. Study sites

Five of the eight sites in this study were sampled under a NASA-
funded North American Carbon Program field and remote sensing
campaign. Thefive sites, each centered on a carbonflux tower, represent
Please cite this article as: Martin, M. E., et al., A generalizable method f
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a latitudinal gradient from lower coastal plainpine plantations in Florida
through mixed northern hardwoods in Massachusetts and New
Hampshire to the cool, moist spruce-dominated forests of Maine.
Three additional study areas were sampled by this research team
through different projects, and include data from New York State, Costa
Rica, and Australia. The sites included in this analysis are as follows:

Austin Cary Memorial Forest (ACMF, Florida) 29.75° N, 82.20° W. This
site comprises two AmeriFlux towers in slash pine–long-leaf pine
stands (Pinus palustris P. Mill., Pinus elliottii. Engelm.). Maintained by
theUniversity of Florida, the ACMFhouses aflux tower in a 65-year-old
naturally regenerated slash pine–long-leaf pine forest. A tower in the
adjacent Donaldson Tract measures CO2 flux in a long-leaf pine plan-
tation that has been regenerating since 1990 (Gholz & Clark, 2002).

Duke Forest (DF, North Carolina) 35.97° N, 79.09°W. Twoof threeflux
towers operated in theDukeUniversity-ownedDuke Forest are included
at this study site: one in an even-aged loblolly pine (Pinus taeda L.)
plantation (~17 years old), and the other in a mature mixed hardwood
stand. Both are part of the AmeriFlux network (Oren et al., 2006).

Harvard Forest (HF, Massachusetts) 42.54° N, 72.17° W. The Harvard
Forest site includes native mixed hardwood and conifer stands and a
series of conifer plantations, mainly derived from old agricultural
fields and pastures. The site was established in 1907 by Harvard
University, and is one of 24 NSF Long-Term Ecological Research sites.
Data from the Harvard Forest includes the longest continuous carbon
balance record for a forest ecosystem (Goulden et al., 1996; Wofsy
et al., 1993).

Bartlett Experimental Forest (BEF, New Hampshire) 44.06° N, 71.29°
W. The USDA Forest Service-administered Bartlett Experimental Forest
is a 1050-hectare tract of secondary successional northern hardwood
and mixed northern conifer forest located in the central White
Mountain region of New Hampshire (Ollinger & Smith, 2005). In the
early 1930s the USDA Forest Service Northeastern Research Station
established 500 permanent (0.1 ha) plots across the BEF. The majority
of these plots (444) have been re-measured in at least three periods,
the most recent being in 2002. Elevations range from 200 m to more
than 850 m. In 2003, an eddy covariance tower was constructed at
Bartlett, and has been in continuous operation since April 2004
(Jenkins et al., 2007). This tower is part of the AmeriFlux network and is
a North American Carbon Program Tier III site.

Howland Forest (HOW, Maine) 45.20° N, 68.74° W. The Howland
Forest is located in the boreal-northern hardwood transitional zone and
consists of stands dominated by spruce, hemlock, and other conifer
species. Flux measurements were initiated in 1995 and there are now
three ~30-m-tall flux towers located in structurally and floristically
similar stands. One of these continues to be operated as a control
treatment while ecosystem-scale manipulations (i.e. nitrogen fertiliza-
tion, harvesting) have been initiated around the other two towers. All
three towers are part of the AmeriFlux network (Hollinger et al., 1999).

Adirondack Park (AP, New York) 44.00° N, 74.40° W. The largely
forested expanses of the Adirondack Park cover a mountainous land-
scape ranging from 300 to 1500 m in elevation. Northern hardwood
forests grade into the boreal forests that occur above 750 m in
elevation or within poorly-drained valley bottoms. Over half of the
Adirondack Park's 2.5 million hectares are preserved by New York
State as “forever wild”, while the remaining half are privately owned
and managed as conservation easements, logging tracts, or commer-
cial and residential land within small towns and villages. Field plots
were drawn from awide variety of forest alliances (McNeil, 2006) and
located within a subset of watersheds that have been studied for
surface water chemistry by the Adirondack Long Term Monitoring
program (Driscoll et al., 2003) or the Direct Delayed Response Prog-
ram (Lee et al., 1989).

La Selva (LS, Costa Rica) 10.42° N, 84.02° W. A humid tropical rain
forest in the Caribbean lowlands of northern Costa Rica, the La Selva
Biological Station resides on land with a rich land-use history that
includes shifting cultivation, selective cutting, and some clearing for
or remote sensing of canopy nitrogen across a wide range of forest
8.04.008
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Fig. 1. Plot-level foliar N distribution from field measurements across all sites. a) Sites
included in AVIRIS analysis. b) Sites covered in Hyperion analysis.
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pasture. Originally established in 1954 as anexperimental farmofmixed
plantations for the purpose of studying natural resources management,
it was purchased in 1968 by the Organization for Tropical Studies as a
private biological reserve station. La Selva today comprises 1600 ha of
primaryand secondary tropical forest andhas becomeoneof the leading
sites in the world for research on tropical rain forests. Foliage was
sampled in 2006 by plant functional type (Loescher et al., 2003).

Bago-Maragle State Forest (BAGO, Australia) 35.75° S, 148.25° E.
Located in southern New South Wales, Australia, the BAGO site is
located in a cool to cold moist subalpine climate. The topography of
this 50,000 ha study area ranges from a gently undulating plateau to
deeply incised valleys and escarpment, with an elevational range of
400 to 1438 m. The plots sampled covered the full range of eucalypt
species present, and were sampled in February 2001 to correspond to
a hyperspectral data acquisition in support of NASA's EO-1 Science
Validation Team (Coops et al., 2003).

2.2. Field data collection and analysis

At each research site, field data were collected for 14–25 plots.
Sampling included the collection of fresh foliage for nitrogen analysis,
and characterization of foliar biomass distribution by species through an
optical point-quadrat method (Smith & Martin, 2001). Plots were
typically 20×20 m in size, with slight variations due to initial plot
establishment history. Although field and image acquisitions were not
always in the same year, field collections were made in the peak of the
growing season, and corresponding image data were selected on the
basis of availability and to bestmatch the seasonality of field collections.
The suite offield data collectionswere combined to generate a plot-level
or “whole canopy” estimate of foliar nitrogen concentration.

Oneachplot, at least 3 trees of each dominantoverstory specieswere
sampled. Leaves were collected by shooting small branches from the
canopy with a shotgun, with each sample consisting of leaves com-
posited from several heights in the canopy. For needle-leaved species,
samples were a composite of all needle age-classes. The samples were
oven dried at 70 °C and groundwith aWileyMill to pass through a 1mm
mesh screen. For all sites except the Adirondack Park, analysis for foliar
nitrogen concentration was done on a FOSS NIR 6500 spectrometer, for
which a calibration relating spectral absorbance to traditional nitrogen
chemistry has been developed (Bolster et al., 1996). For the Adirondack
Park samples, analysis for foliar N concentration was conducted using
the traditional CHN combustion technique.

Species fraction of canopy biomass was determined by the use of a
camera point-quadrat sampling combined with leaf mass per area
(LMA) measurements. The camera point-quadrat method has been
demonstrated to be an accurate means of determining the relative
distribution or fraction of leaf area byheight in a forested canopy (Aber,
1979a,b; Smith & Martin, 2001). In each field plot, 15 grid point ob-
servations at nine sampling stations were taken (plot center and each
of the four cardinal and off-cardinal directions at 15 m from plot
center) for a total of 135 observations per plot. The sampling device
was a 35-mm camera with a telephoto lens used as a range finder
(calibrated to distance in meters) and a 15 point gridded focusing
screen. Fraction of leaf area by height and by species were determined
with this method, and conversion to fraction of species by leaf weight
was made with LMA data. LMA data sources varied by site, with some
site/species-specific measurements available. When site/species-spe-
cific data were not available, LMA data as reported in the literature
were used (Reich et al., 1999; Smith & Martin, 2001; Wright et al.,
2004). A comparison of the camera-based method and the more
conventional litterfall mass-based calculations of canopy-level nitro-
gen concentration demonstrated nearly identical prediction of mass-
based nitrogen concentration among sample plots (Smith & Martin,
2001).

Plot-level foliar nitrogen concentrationwas calculated as the mean
foliar nitrogen concentration for each species, weighted by species
Please cite this article as: Martin, M. E., et al., A generalizable method f
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canopy mass fraction. The distribution of canopy nitrogen concentra-
tion measured at each site is shown in Fig. 1.

2.3. Hyperspectral data

2.3.1. Data collection
Hyperspectral data were obtained in 2001–2006 for eight sites in

the eastern U.S., Costa Rica, and Australia (Table 1). NASA's Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) was flown on the ER-2
platform and collected data in an 11 km swath over Duke Forest, North
Carolina and Austin Cary Memorial Forest, Florida, in 2002, and over
Howland Forest, Maine, Bartlett Experimental Forest, NewHampshire,
andHarvard Forest,Massachusetts in 2003. The AVIRIS sensor captures
upwelling spectral radiance in 224 contiguous spectral bands for
wavelengths from 400 to 2500 nm, with a 10 nm nominal bandwidth.
The ER-2 flies at approximately 20 km above sea level, resulting in a
pixel size of approximately 17 m.

Hyperspectral data were collected over the same AVIRIS sites by
NASA's spaceborne Hyperion sensor between 2002 and 2005. In
addition, Hyperion imagerywas collected over the Adirondacks region
of New York, the La Selva Biological Station, and the Bago-Maragle
State Forest in NSW, Australia (2001–2006). Mounted on the EO-1
satellite (Pearlman et al., 2003), Hyperion orbits the earth at 705 km
above sea level, and records radiance in 220 bands with the same
or remote sensing of canopy nitrogen across a wide range of forest
8.04.008
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Table 1
Dates of field and image data collection

Image data

AVIRIS Hyperion Field data (number of plots)

DF May 2002 – June 2002 (16)
ACMF June 2002 – June 2002 (15)
HF August 2003 September 2002 July 2002 (20)
HOW August 2003 August 2002 July 2002–03 (25,23)a

BEF August 2003 August 2002 Jul–Aug 2005 (14)
AP – September 2003 Jul–Aug 2003 (14)
LS – February 2006 Mar–Apr 2006 (19)
BAGO – April 2001 Feb 2001 (14)

a Number of plots used for Howland site varies between AVIRIS and Hyperion
analysis due to slightly different geographic coverage.
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spectral range as AVIRIS, 10 nm spectral resolution, and 30 m spatial
resolution, for a 7.7 km swath. Although the signal-to-noise ratio for
Hyperion data is lower than that of AVIRIS, it is more widely available
at the current time, and provides an opportunity to demonstrate the
potential capabilities for space-based hyperspectral data in this
application.

We conducted two parallel analyses for AVIRIS and Hyperion data,
when possible. However, data were not available for all eight sites for
both instruments; AVIRIS data were available for only five of the U.S.
sites, and suitable Hyperion were available for only six of the eight
sites. At ACMF and DF, the available Hyperion data had been acquired
after leaf senescence, eliminating those sites from inclusion in this
analysis. The image data used in this paper were limited to those data
collected during a similar phenological period as the field data; typi-
cally within a 1–2 month phenological window of the corresponding
field data collection.

2.3.2. Preprocessing
Both AVIRIS and Hyperion were preprocessed using ENVI v.4.2 and

ERDAS Imagine v.8.7. Image data were received as calibrated at-sensor
radiance, and an initial band subsetting process removed uncalibrated
bands from the Hyperion image data, and removed overlapping bands
and those with low signal-to-noise ratios (e.g. water absorption bands)
from both Hyperion and AVIRIS datasets. Image datawere standardized
by normalizing the mean and standard deviation of each column to the
overall mean and standard deviation for eachwavelength in the images.
The main purpose of this standardization was to minimize a striping
artifact present inHyperion data (Datt et al., 2003), but it alsominimized
a view-angle brightness gradient apparent in some AVIRIS scenes. All
image datasets were atmospherically corrected with ImSpec LLC's
Atmospheric COrrection Now (ACORN) v.5.1, transforming data from
calibrated sensor radiance to apparent surface reflectance. ACORNmode
1.5 was used for AVIRIS data (“Advanced atmospheric correction of
hyperspectral data with spectral fitting for water vapor and vegetation
liquid water”), andmode 1.5pb for Hyperion (the same as mode 1.5, but
designed for pushbroom instruments with cross-track spectral calibra-
tion variation). Finally, all images were georegistered to known
coordinates collected from USGS digital orthophotos and field GPS data.

2.4. Regression

While many fewer bands may provide the necessary signal to
detect foliar N (e.g. Townsend et al., 2003), we chose to retain for
regression analysis nearly the full-spectral range of each sensor in
order to capture spectral information that may relate to foliar N in
some currently undescribed manner. After removing bands that
contained no data or that were visibly noisy, remaining bands were
within the spectral regions of 400–1300 nm, 1400–1800 nm, and
2000–2500 nm (189 AVIRIS bands and 113 Hyperion bands at 10 nm
bandwidth).
Please cite this article as: Martin, M. E., et al., A generalizable method f
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Reflectance spectrawere extracted from the four pixels in the AVIRIS
and Hyperion images nearest the coordinates for eachfield-measuredN
plot at each site, and averaged (a single exceptionwas in the AP dataset,
where the single nearest pixel was used). Partial least squares (PLS)
regression was then used to relate these spectra to field-measured N
(Ollinger & Smith, 2005; Smith et al., 2002, 2003). PLS regression is a
type of eigenvector analysis that reduces the full spectrum to a smaller
set of independent factors, with corresponding field data used directly
during the spectral decomposition process (Kramer,1998). Spectrawere
analyzed with PLS individually for each site, as well as together in a
multi-site dataset. All PLS models were validated using a standard
“leave-one-out” cross-validation, with the final model developed using
all sampleswithin a particular dataset. The calibration dataset compiled
for this study incorporated more than 1000 individual foliage samples,
representing more than 70 species collected from 137 plots among the
study sites. For the AVIRIS and Hyperion analyses, image data were
available for 90 and 104 field plots, respectively.

Three approaches were used in the evaluation of field and image
data for the development of predictive canopy foliar nitrogen con-
centration equations. In each of the following cases, data from AVIRIS
and Hyperion were analyzed separately:

1. A single calibration was developed for each site based on the field
data available at that specific site. This method represents the
technique used to date in hyperspectral studies of foliar chemistry
(Coops et al., 2003; Smith et al., 2002, 2003; Townsend et al., 2003).

2. For each instrument, all data were combined into a single calibration
file for the development of a multi-site calibration. In this approach,
all plots from all sites were included, representing the full range of
variability in both spectral and field conditions. In this first and
second approach, the accuracy of the PLS equations developed is
represented by the coefficient of determination (R-squared), while
precision is determined by standard errors of performance. These
include the standard error of calibration (SEC), a measure of the
average difference between predicted and measured N at the cali-
bration stage, and the standard error of cross-validation (SECV),
which is the root mean square of the residuals derived from an
iterative exclusion and prediction method, whereby a single data
point (plot) is iteratively held back from the calibration and is
predicted by the resulting calibration (Mark & Workman, 1991).

3. In the final approach, each sitewas iteratively excluded from amulti-
site calibrationwhichwas thenused to independently predict foliarN
values for all plots within the excluded site. This approach evaluates
the ability of the calibration technique to predict canopy foliar nitro-
gen concentration for sites which were not represented in any man-
ner within the calibration dataset. In this final approach, SEP was
calculated for plots within each individual site, to determine the
ability of this technique to predict chemistry for entirely independent
sites.

3. Results and discussion

3.1. Individual-site calibration

PLS regressions for each of the individual study sites demonstrated
strong predictive relationships between spectral reflectance and whole
canopy foliar N concentration, with R2 values ranging from 0.69 to 0.85
for AVIRIS spectra, and from 0.45 to 0.83 for Hyperion spectra (SECV
ranging from 0.13–0.23 and 0.16–0.32, respectively; Table 2, Fig. 2a). At
the two ends of calibration performance, BEF and AP had the highest
SECV, with the lowest SECVs at BAGO and LS. The higher SECV values at
BEF and APmay be attributable to thewide variation in forest functional
types (i.e. broadleaf deciduous vs. needle-leaf evergreen) within the BEF
and AP sites. This forest type variation results in wide variation in both
spectral reflectance and foliarN concentration at a local scale. The ACMF,
BAGO, and LS sites had the lowest SECV, possibly due to the fact that
or remote sensing of canopy nitrogen across a wide range of forest
8.04.008
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Table 2
Results from PLS regression of spectral response to whole canopy foliar N

Dataset Plot-based cross-
validation

Site-based cross-validation

R2 SEC SECV R2 SEP of
predicted site

Bias

AVIRIS
DF 0.81 0.14 0.17 0.84 0.16 −0.06
ACMF 0.85 0.09 0.13 0.81 0.26 0.21
HF 0.69 0.16 0.17 0.75 0.17 −0.02
HOW 0.79 0.17 0.22 0.81 0.17 0.05
BEF 0.73 0.20 0.23 0.81 0.25 0.05
All sites combined 0.83 0.18 0.19

Hyperion
BAGO 0.60 0.04 0.16 0.08 0.56 −0.50
BEF 0.63 0.24 0.26 0.75 0.25 0.10
HF 0.69 0.09 0.17 0.67 0.43 0.39
HOW 0.83 0.14 0.18 0.89 0.35 0.28
LS 0.45 0.14 0.16 0.38 0.17 0.05
AP 0.78 0.25 0.32 0.79 0.61 −0.53
All sites in multi-site equation 0.82 0.22 0.25

Statistics reported for plot-based cross-validation represent measures of accuracy and
precision for regression methods 1 (individual-site calibrations) and 2 (comprehensive
multi-site site calibrations) described in theMethods. Statistics for site-based cross-validation
represent performance of regression method 3, in which the site-by-site cross-calibration
regressionmodelswereused topredict foliarN for independentsitesnot representedwithin
the calibration dataset. SEC = Standard error of calibration (average difference between
predicted and measured N), SECV = standard error of cross-validation (RMS of residuals
derived from iterativeplot exclusion andprediction), SEP of predicted site=standard error of
cross-validation derived from iterative site exclusion and prediction, bias = systematic
difference between predicted and measured values (average value of residuals) (Mark &
Workman, 1991).
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these respective sites are dominated by plants of a similar functional
type. These two extremes (diverse vs. uniform functional plant types
within a single site) correspond to the extremes in calibration
performance. These functional and structural differences in leaf type
and habit may also be related to differences in canopy structure inways
that modify the relationship between reflectance and foliar N. Despite
differences in absolute model performance across sites, it is noteworthy
that the SECV values across all sites fell within approximately 7 to 17% of
their respective mean foliar N concentration values.

3.2. Comprehensive multi-site calibration

When reflectance spectra and corresponding measured canopy N
were combined into a single dataset for each instrument (multi-site
calibration; see regression approach 2 in Methods section), the positive
linear relationship remained, with a slightly better calibration resulting
from themulti-site AVIRIS dataset than theHyperion dataset (R-squared
0.83 and 0.82, SECV 0.19 and 0.25, respectively; Table 2, Fig. 2b). This
methodology has been published in a number of previous papers for
individual sites, and both SECV and relative performance of the two
instruments observed here are comparable with prior published results
(Coops et al., 2003; Smith et al., 2003; Townsend et al., 2003).

3.3. Site-by-site Cross cross-calibration

As each site was iteratively excluded from the calibration (regres-
sion approach 3), results differed between sensors and among sites. In
general, AVIRIS calibrations were better able to predict excluded sites
than were Hyperion calibrations (Fig. 2c). The highest SECV for pre-
dicted foliar N resulted from independent predictions at the AP and
BAGO sites (Table 2) — these sites represent plots at the high and low
extremes of measured foliar N concentrations, respectively (Fig. 1). In
the case of the AP site, plot-level N for several plots exceeds values
found in any other site, and are therefore not represented in the
calibration (Fig. 1). In this case, where we attempt to predict foliar N
beyond the upper limit of the calibration dataset, wewould expect the
Please cite this article as: Martin, M. E., et al., A generalizable method f
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observed under-prediction for these sites. In addition to the difference
in foliar N composition at this site, it is one of two sites where image
datawere acquired in September. It is possible that bymid-September,
the imagery was collected at the onset of nitrogen retranslocation, and
reflects an actual reduction of nitrogen concentration from that
measured during the field data campaign.

At the Australian BAGO site — where the lowest foliar N values
were observed — foliar N concentration was also consistently under-
predicted. A possible explanation for this poor prediction is that by
excluding these low foliar N values from the calibration, the canopy
characteristics found at BAGOwere not adequately represented by the
balance of sites in this particular calibrationmodel (similarly low foliar
N values in this equation were found only in red spruce trees at the
Howland, Maine site). Yet, when the BAGO site was included in the
comprehensive multi-site calibration, the resulting equation per-
formed well at sites with broad inter-specific variability of mixed
functional type forests (e.g. Adirondack Park), as well as at sites
characterized by the narrow range of foliar N and spectral variability
which occurs within a single-genus forest. The independent predic-
tions made for the LS plots resulted in the lowest R2 of all sites. This
may be due to the fact that this is the only tropical site in the study,
and it is possible that although similar in canopy nitrogen to other
sites, theremay be canopy-level differenceswhich are not represented
in the balance of the study sites.

3.4. Relative importance of spectral bands in PLS calibrations

The relative influence of spectral regions on the determination of
foliarN concentrationwas evaluated byweighting calibration equation
coefficients with average spectral reflectance (Fig. 3). This method of
evaluation compensates for those areas where coefficients may be
large, but reflectance low, thereby reducing the influence of the large
coefficient on predicted N. Results shown in Fig. 3 indicate a high
degree of variation in thewavelength importance, with two important
trends emerging. First, the most consistently influential reflectance
channels occur in the NIR plateau, from 700–1250 nm, with a positive
relationship between reflectance and foliar N throughout the region,
and localized peaks at 817⁎, 922,1107,1192⁎nm (AVIRIS) and 762, 813⁎,
984⁎, 1225⁎nm (Hyperion). Wavelengths denoted with (⁎) have been
described in the literature as spectral regions associated with the
absorption of nitrogen compounds (Curran, 1989; Burns & Ciurczak,
1992; Osborne & Fearn, 1986; Williams, 2001). Specifically, these
wavelengths have been associated with overtones and combination
bands related to N–H and C–H bonds found in proteins. It is not
surprising that other regions, not normally associated with nitrogen
compounds, are also heavily weighted in the calibrations; these are
likely associatedwith leaf compounds and/or leaf traitswhich co-occur
with nitrogen compounds. Although the NIR plateau is also strongly
influenced by water content and canopy structure, it can be noted that
in the spectra of fresh leaves, reflectance in this region (800–1200 nm)
is also highly correlated with nitrogen concentration (unpublished
data). Secondly, a negative relationship is seen between foliar N and
reflectance in the region of 720–730 nm. This negative relationship is
expected in this chlorophyll absorption region, as increasing chlor-
ophyll and nitrogen result in a decrease in reflectance. In the longer
wavelength region of the NIR the influence of reflectance on the
determination of foliar N is much lower, with localized peaks at 1730⁎
and 2280⁎ (AVIRIS), and 1497⁎ and 2173⁎ (Hyperion).

The relative importance of each band differs among AVIRIS and
Hyperion datasets (Fig. 3), due to the fact that the available bands for
each instrument differs. The bands eliminated from the analysis
include those with low signal-to-noise, regions of strong atmospheric
water absorption, and a number of uncalibrated Hyperion bands. Fig. 4
shows the weightings for the individual-site calibrations in the
spectral regions discussed above, where AVIRIS and Hyperion datasets
overlap (690–1090 nm). This figure shows that the relative importance
or remote sensing of canopy nitrogen across a wide range of forest
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Fig. 2. Plot-level nitrogen concentration as measured in the field and predicted with AVIRIS and Hyperion data. a) Site-specific calibration, b) multi-site calibration, and c) multi-site
calibration with site-level cross-validation.
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of the reflectance spectra for determining canopy N concentration is
consistent among the study sites.

3.5. Calibration considerations imposed by sites, instrument characteristics,
and image processing methods

There are a number of important considerations in the current and
future development of this generalized canopy foliar nitrogen pre-
diction method, due to the multi-site, multi-image nature of this
approach. Of particular importance are themethods used by individual
investigators when compiling data from a variety of sources, ranging
from field measurements to image sources and image processing
techniques. We have limited this specific analysis to sites and imagery
Please cite this article as: Martin, M. E., et al., A generalizable method f
ecosystems, Remote Sensing of Environment (2008), doi:10.1016/j.rse.200
sampled and processed by the authors. As additional datasets are
incorporated into this approach (sites, image data sources, etc.), it will
be important to address a number of issues that have surfaced in this
analysis.

As with any multi-scene, multi-date analysis, the conversion of at-
sensor radiance to surface reflectance is extremely important. There
are a number of software options for making this conversion, and an
analysis of combined scenes will likely require application of a single
correction method across the full suite of data. Although all methods
may produce reasonable reflectance spectra (Kruse, 2004), subtle
differences in output may make multi-scene analysis difficult.

Calibrations developed fromAVIRIS datawere consistently stronger
than those from Hyperion, likely due to a combination of Hyperion's
or remote sensing of canopy nitrogen across a wide range of forest
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Fig. 3. Multi-site calibration equation coefficients normalized by average spectral
reflectance for a) AVIRIS, and b) Hyperion. Single value noted on graph reflects an
extreme value at 1326 nm.

Fig. 4. Calibration equation coefficients normalized by average spectral reflectance by
site for wavelengths from 690 nm to 1090 nm (a. AVIRIS, b. Hyperion). Note the
consistency across sites in importance of weightings in the chlorophyll absorption area
(~690–730 nm) and the NIR plateau (~750–1090 nm).
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coarser spatial resolution and much lower signal-to-noise ratio (SNR),
which can be nearly an order of magnitude lower than AVIRIS SNR
(Green, 2005; Kruse, 2003). In addition to the two instruments used in
this paper, a number of commercial hyperspectral data acquisition
options exist at the present time. However, before relying on foliar N
predictions from these data sources, it will be important to carefully
evaluate these data sources on the basis of spatial/spectral resolution
and data quality. In the current work, we have not attempted to merge
data from multiple instruments, nor have we transferred equations
developed for one, to the other.

While previous work relating image data to foliar chemistry has
often involved spectral smoothing with absorption or first-derivative
transformation (e.g. Smith et al., 2003; Townsend et al., 2003) or
continuum removal (Curran et al., 2001; Huang et al., 2004; Kokaly &
Clark, 1999), foliar N calibrations with “unsmoothed” AVIRIS and
Hyperion reflectance spectra in this study were slightly more robust
than those with absorbance or first-derivative transformations. A
possible explanation for this result is that the field sites captured in
both AVIRIS and Hyperion scenes were near nadir, with an estimated
sensor look angle ranging from less than 1° to 7° off-nadir. Further,
with cross-track scanning and north–south orientation, neither AVIRIS
nor Hyperion sensors were ever directly forelit or backlit. Finally, the
PLS regression reduces full-spectrum data to a smaller set of factors;
hence, the calibration itself minimizes bi-directional reflectance
factors that may be present in reflectance spectra. Calibrating with
reflectance data may also have the benefit of minimizing data loss
caused by transforming or smoothing the data, thereby retaining the
high information content available with hyperspectral imagery. As the
development of a generalized canopy foliar nitrogen calibration con-
tinues, and site and image variability expand, it may be beneficial to
address some of these other techniques.

Finally, with the exception of the slashpine plantation at the ACMF,
the sites in this study represent closed canopy forests. Without
representation of functional types found in shrublands, grasslands, or
semi-arid systems, for example, some loss of prediction accuracy
would be expected in these sites. Hence, new image and field data
from amore diverse range of biomeswould expand the applicability of
a generalized model.
Please cite this article as: Martin, M. E., et al., A generalizable method f
ecosystems, Remote Sensing of Environment (2008), doi:10.1016/j.rse.200
4. Conclusions

This study has shown that a generalized calibration developed from
a combination of data fromdiverse study sites overmultiple scenes can
predict foliar N concentration at new sites. Images derived from the
multi-site calibration are virtually identical in appearance to those
derived from site-specific calibrations estimates, which are shown in
other papers. For example, previous papers have used canopy nitrogen
concentration images to predict patterns of forest productivity (Smith
et al., 2002; Ollinger and Smith, 2005), and measures of soil N cycling
(Ollinger et al., 2002) at the BEF site.McNeil (2006) developed a foliarN
map from Hyperion data, which was then used in an analysis of the
spatial controls on foliar N concentration within the Adirondack Park,
NY (McNeil et al., 2005).

As this analysis progressed through the threemethods (ranging from
the inclusion of comprehensive field data for each site, to no field data),
the ability to determine foliar N was reduced. However, the ability to
apply a multi-site calibration model with even a reduced level of con-
fidence opens up an enormous potential for sites that have hyperspec-
tral coverage, but inadequate density of field data for site-specific
calibration. The equation could be applied to virtually all image data
collected and then validated against the existing field data. As new
image and field data become available from more geographically and
floristically diverse sites, and from a wider array of forest biomes, we
or remote sensing of canopy nitrogen across a wide range of forest
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anticipate that this broader dataset will allow better characterization of
“new” or less well-studied sites. Extending the prediction of canopy
foliar nitrogen to these sites could greatlyexpand thenumberof possible
foliar N applications. We suggest that some loss of prediction accuracy
may occurwhenmultiple plant functional types are included or when a
particular functional group is not represented in the calibration model
(e.g. Bago was poor when eucalypts were not included). It follows from
this that efforts to improve detection of tree species and plant functional
types would be a very useful complement to future improvements in
foliar N detection.
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