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Evcn the most ambitious of field campaigns cover extremely small frac-
tions of the earth's land area and capture limited samples of its eco-
logical complexity. As a result, addressing regional-to-global environmental issues
can be difficult or impossible without some means of extending field measurements
to the appropriate spatial domain. Measurements that are stratified over a large
number of ecological units are vital (chap. 1, this volume), but are still incomplete
without knowledge pertaining to the distribution, variability, and spatial extent of
cach. Consequently, ecologists have become heavily invested in methods for relat-
ing observations of individual organisms and field plots to the broader regions in
which they exist (e.g., Ehleringer and Field 1993; Cohen and Justice 1999).
Although a variety of scaling approaches have been investigated, there is wide-
spread agreement that remote sensing holds a central and irreplaceable role. Re-
mote platforms are the only means by which large and contiguous portions of the
Earth’s surface can be sampled, and the selective absorption and reflection of ra-
diation by different plant tissues provide a unique basis for obtaining ecologically
relevant information. However, remote observations also pose enormous method-
ological challenges, and to date, there is no single remote sensing method that of-
fers an optimal approach to NPP measurement across all scales and for all research
objectives. In this chapter, we review a number of approaches through which remote
sensing data can be applied to terrestrial NPP, or some of its important constituents,
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and discuss the trade-offs of various methods. Analogous approaches for marine
ecosystems are described in chapter 9 of this volume. By nature, the remote sens-
ing determination of NPP is more indirect than other terrestrial methods described
in this volume, because ecosystem properties are only inferred through their inter-
actions with electromagnetic radiation,

Given the breadth of the topic, our goal in preparing this chapter was not to pro-
vide a working manual of all NPP remote sensing methods available. Instead, we
sought 10 summarize important overall strategies for NPP detection into a frame-
work that involves the types of instruments used, the ecological properties they can
be designed to detect, and the manner in which those properties can be translated
into estimates of NPP. For example, instrument types can be broadly categorized
into (1) passive sensors, which record reflected radiation that originates from a
natural source (most often the sun), and (2) active sensors, which emit a known
form of radiation from their own source (e.g., laser or radar) and record what is
returned from the target surface. These categories can be further subdivided by the
nature of the radiation they detect, the spatial resolution of the recorded measure-
ments, the temporal frequency of sampling, the number of spectral channels de-
tected, and the degree of spectral aggregation within each channel,

Not surprisingly, the properties of different remolte sensors have direct bearing
on the types of ecological variables that can be estimated and the methods by which
they can be used to estimate NPP. For example, data from passive oplical sensors
tvpically indicate the degree to which solar radiation is absorbed or reflected by
the Earth's surface at different wavelengths or view angles. Because plant pigments
associated with photosynthesis have unigue absorption properties, this type of data
can be related to a range of variables associated with the greenness, or physiologi-
cal capacity, of vegetation, Such variables, however, are not commensurate with
NPP, and can be used to derive NPP estimates only when combined with process
models or empirically derived algorithms.

Finally, although the methods we discuss are relevant to NPP studies in terres-
trial ecosystems generally, our focus will be more heavily directed toward forests.
Because forests represent the largest (raction of terrestrial carbon (C) storage and
because they confront us with some of the most difficult technical challenges con-
cerning detection of biomass and productivity, they have received a disproportion-
ate amount of attention in the ecological remote sensing literature.

Vegetation Properties Using Passive Sensors

This section discusses methods in which vegetation properties that are observable using
passive sensors can be combined with various models and empirical equations to
estimate NPP. The approaches vary in terms of the complexity of the models used,
their reliance on local field measurements, and the degree to which they can be ap-
plied 10 longer-term mechanisms of environmental and ecological change. Specifi-
cations of several passive sensors that are relevant to NPP are shown in table 11.1.

The simplest models used to derive NPP from remote sensing data are empiri-
cally derived productivity algorithms, which combine field-based relationships with
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Table 11.1. Instrument characteristics for several passive sensors relevant to NPP

Spectral - Swath Spatial Frequency
Inztrument  Channels (k) Resolution (m)  of Coverage Motes
AVHER 5 2400 10 Daily global coverage Continuous data since
1981
MO 36 2330 250-1000  Global coverage Algorithms developed
every 1-2 days for NPP prediction
Landsat 7 7 145 15-30 16 days Landsat 1 launched in
1972
S5POT 4 6l 1020 25 days Commercial sensor
Lkonos 3 12 1-4 ¥ duys off nadir High-resolution
(144 days at nadir) commercial sensor
Hyperion 220 7.5 k¥ 16 days High spectral-resolution
imaging spectrometer
AVIRIS 224 2-11 4-14 Trregular High spectral-resolution

arrcrafl imstrument

remotely sensed canopy properties that correlate strongly with rates of production.
This method offers the benefit of generating productivity estimates that are con-
strained to known local patterns of growth, but does not consider ecological mecha-
nisms by which estimates can be extended to broader spatial or temporal scales. OF
intermediate complexity are the light-use efficiency (LUE) models, which use the
remotely sensed fraction of absorbed photosynthetic radiation to estimate maximum
C assimilation rates and then adjust for suboptimal climate conditions, using a se-
ries of simple climate response algorithms. These are more dynamic in that they
can account for temporal variation in climate, but they focus only on current veg-
elation conditions and generally do not include the ecological or biogeochemical
processes needed to simulate change over the course of vegetation development or
longer-term environmental change. Of greatest complexity are ecosystem process
models, which simulate a wider suite of ecological mechanisms, such as photosyn-
thesis, respiration, litterfall, decomposition, and soil nutrient turnover, Their added
complexity allows simulation of a greater range of environmental factors (e.g.,
pollution deposition, physical disturbance, climate change), often over long time
scales, but this capacity comes with added demands in terms of vegetation param-
eters and environmental data inputs,

In the interest of simplicity. we discuss these 3 categories of remote sensing model
linkages as being distinct from one another, but readers should be aware that the
boundaries between them are often blurry and hybrid approaches are also available
{¢.g., LUE models that include mechanisms affecting long-term biogeochemical
processes).

Empirically Derived Production Algorithms

The simplest NPP models are those that consist of field-based empirical relationships
between NPP and canopy properties that can be estimated using remote sensing, When
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such relationships are available, this approach offers a straightforward means of
producing estimates that are constrained to known patterns of productivity. The
resulting accuracy is dependent only on the strength of the observed trends and on
the accuracy of the vegetation property estimates. The principal disadvantage is that
these approaches include no mechanisms that would allow extrapolation in time or
under varying environmental conditions. Most of the canopy properties that have
been examined as potential scalars between plot-based measures of NPP and re-
mote sensing based metrics can be generalized into two groups: (1) biophysical
properties such as canopy biomass or leaf area index (LAI), which represent the
vegetation surface area available for light absorption, and (2) biochemical variables
such as chlorophyll or nitrogen (N) concentrations, which regulate the efficiency
with which harvested light can be utilized for C assimilation,

Detection of Biophysical Properties Using Broadband
Sensors and Vegetation Indices

Methods for detecting biophysical properties have a longer history of development
and are based on the distinct optical properties of live vegetation in the visible and
near-infrared (NIR) regions of the solar spectrum. Whereas leaf reflectance in the
visible region is typically low, due to the radiation absorption properties of leaf
pigments (cholorphyll and caratenoids), reflectance in the NIR is high because plant
cell walls strongly scatter NIR energy. Early research demonstrated that this dif-
ference in visible versus NIR reflectance could be significantly related to various
properties of canopy “greenness” (e.g., Tucker 1979).

The advent of broadband Earth-observing satellites, such as the Landsat thematic
mapper and the advanced very high resolution spectroradiometer (AVHRR) in the
1970s and 1980s resulted in efforts to produce simple metrics that captured varia-
tion in vegetation properties across broad spatial scales. The resulting vegetation
indices (VIs), based on differing canopy reflectance at various visible and NIR
wavelengths, are a composite property representing canopy cover, leaf area, and
canopy architecture. Except in optically dense vegetation canopies (i.c., those with
high leaf biomass and LAI), VIs tend to increase in a linear manner with increasing
leaf area. The use of Vs, particularly NDVI {the normalized difference vegetation
index; eq. [11.1] and SR (the simple ratio; eq. {11.2]), to predict LAl and the ap-
plication of both as estimators of productivity, has been most effectively demon-
strated in forest monocultures and across large moisture gradients where substantial
variation in LAl or canopy cover fraction has been correlated with field productiv-
ity measurements (e.g., Vose and Allen 1988; Gower et al. 1992; Matson et al. 1994,
Fassnacht and Gower 1997; Loo et al. 2004},

NDVI = (NIR — red)/(NIR + red). (1L1)
SR = red/NIR (11.2)

Despite their advantages and widespread use, index-based methods are often chal-
lenged by factors that cause both vegetation indices and LAL to exhibit asymptotic
relationships with canopy C assimilation. At high LAL a decrease occurs in the
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incremental change in both VIs and C fixation capacity associated with a rise in
LAl This pattern has been well documented and stems from the fact that, as LAl
increases, the amount of radiation intercepted by additional leat layers declines
exponentially due to increased self-shading (Gower et al. 1993, Reich et al. 1999a).
The result is that relationships between NDVI and LAI eventually become satu-
rated and, at LAI values above 3 or 4, the two variables become increasingly
decoupled (Turner et al. 1999). In some systems this is a minor issue, but in closed-
canopy forests, which often have mean LAI values of 4 or greater, this can be a
substantial limitation, In such instances, wide variation in growth can still occur,
but is driven instead by variation in leaf-level physiological capacity and the effi-
ciency with which absorbed radiation is converted into CO, fixation (Reich et al.
1999b; Smith et al. 2002). The saturation in the NDVI application to LAI is exactly
analogous to the saturation observed in the synthetic aperiure radar application to
biomass, discussed in a later section.

Detection of Biochemical Properties Using High
Spectral Resolution Sensors

More recently, development of methods that allow remote sensing of leaf biochemi-
cal properties offer additional means of characterizing spatial patterns in produc-
tivity and may provide a solution for areas where LAl-based approaches are most
challenged. These methods make use of the more detailed spectral information
provided by high-spectral-resolution sensors or imaging spectrometers (e.g., Ustin
et al. 2004). An advantage of these instruments over more conventional sensors is
that instead of measuring reflected radiation in a small number (typically from I to
6) of broad spectral bands, they record reflected radiation over hundreds of narrow
and contiguous bands, often covering a spectral range from 400 to 2500 nm. Be-
cause of their enhanced spectral coverage, the data they record have been used to
detect more subtle forms of ecological variation, including leal pigments (Fuentes
et al. 2001), species composition (Martin et al. 1998; Roberts et al. 1998), the frac-
tion of photosynthetic versus nonphotosynthetic vegetation (Asner et al. 2003), and
chemical constituents such as lignin and N concentrations (e.g., Martin and Aber
1997; Smith et al, 2002). At the time of this writing, there are at least a dozen air-
craft-based imaging spectrometers in operation, including NASA's airborne vis-
ible and infrared imaging spectrometer (AVIRIS) and the commercial HyMap
sensor, as well as one orbital sensor—NASA's Hyperion instrument, which is part
of the EO-1 satellite. A principal limitation of all existing imaging spectrometers is
their small spatial coverage (swath widths of approximately 2 to 10 km), a problem
that may be overcome by future sensors.

The benefit of leaf biochemistry detection in studies of terrestrial productivity
stems from the well-known relationship between leaf N and photosynthetic capac-
ity in terrestrial plants (Field and Mooney 1986; Reich et al. 1999b). The relation-
ship has its basis in the fact that foliar N is found primarily in cellular proteins and
that the principal carboxylating enzyme, Rubisco, makes up a majority of total leaf
protein. Evidence supporting the link between canopy N and ecosystem productivity
comes from both theoretical and empirical studies. Because N is often the nutrient
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most limiting to plant growth, it has been argued that natural selection should favor
individuals that allocate N in an efficient manner (Hirose and Werger 1987,
Hollinger 1989; Field 1991). Sellers et al. (1992} extended this argument to show
that C uptake is maximized when N is allocated optimally with respect to available
solar radiation. A consequence of this relationship is that it should be possible to
determine whole-canopy photosynthesis by knowing the leaf N concentration at
the top of the canopy (Sellers et al. 1992), Data from stand-level studies in temper-
ate forests support this notion, having demonstrated significant relationships among
NPP, canopy-level N concentrations, and rates of N mineralization in soils (Reich
etal. 1997; Smith et al. 2002; Ollinger et al. 2002}

Methods for estimating canopy N using high-spectral-resolution remote sens-
ing have been tested by a number of investigators (Zagloski et al. 1996; Martin and
Aber 1997; Townsend et al. 2003), and the usefulness of an N-based approach to
estimating biomass production and soil N status has been demonstrated in studies
of northern temperate forests (Smith et al. 2002; Ollinger et al. 2002). These analy-
ses combined image data from NASA’s AVIRIS instrument with extensive field
measurements of canopy chemistry and related ecosystem properties. Field mea-
surements demonstrated that patterns of aboveground NPP were more closely tied
to canopy N than to several other commonly measured properties, including LAI
and foliar biomass.

Structural versus Biochemical
Vegetation Properties and NPP

Despite the growing number of studies that point to either biochemical or bio-
physical vegetation properties as useful scalars for biomass production, the rela-
tive importance of structural versus biochemical sources of variability over broad
spatial scales is still largely unresolved. This is partly due to the fact that indi-
vidual studies tend to focus on one variable or the other, and rarely measure both
over the same range of conditions. Another source of disparity lies in the differ-
ent spatial scales to which various methods have historically been applied. Given
the spatial limitations of imaging spectrometers, most studies of canopy biochemi-
cal properties have focused on relatively small landscape units, whereas studies
carried out over broader scales necessarily look toward canopy properties pre-
dicted by broadband VIs. Future efforts to reconcile these relationships over a
range of scales are greatly needed.

1n absence of the field data needed to address this question directly, an interest-
ing alternative method involves the combined application of models designed to
simulate the hehavior of light in forest canopies (radiative transfer models) and those
designed to simulate canopy C assimilation (ecosystem process models). To inves-
tigate the potential of this approach, a pilot study was conducted using the PnET
canopy photosynthesis model (Aber et al. 1995), coupled with the SAIL-PROS-
PECT model of canopy reflectance and leaf optics (Verhoef 1984; Jacquemoud and
Baret 1990). The aim was to test the degree to which LAT versus leaf-level chem-
istry affects both C uptake and light reflectance over the range of climate- and for-
est- type conditions in the northeastern United States {using climate and vegetation
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data from Ollinger ¢t al. 1998). Vegetation parameters that are central 1o both models
include LAl and foliar chemistry, although SAIL-PROSPECT uses arca-based
chlorophyll concentrations and PnET uses mass-based foliar N concentrations. For
this analysis, a linear N-chlorophyll relationship was used, based on data for de-
ciduous tree species from Yoder and Pettigrew-Croshy (1995).

The results from this exercise indicate the combined effects of folinr chloro-
phyll concentrations and LAT on canopy net photosynthesis and NDVI (fig. 11.1).
These results are consistent with carlier studies showing that variation related to
LAI tends to saturate above LAl values of 3 or 4, whereas the effect of chloro-
phyll does not. Nevertheless, the responsiveness to LAI at lower LAl values is
apparent, and suggests that methods for simultaneous detection of both variables

would be very beneficial.

Canopy Net Psn.

@

ChlL.atb 75, =7

LAI

Figure 11.1. Results of simulations using the PnET and SATL/PROSPECT models, indi-
cating predicted responses of (A) canopy photosynthesis and (B) NDVI across the north-
eastern United States o variation in LAL and chlorophyll a+b concentrations {pg/cm’).
Climuate inputs were sumpled from a GIS-based climate model over the geographic range
covered by northeastern U5, deciduous lorests,
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Light-Use Efficiency Models

The existence of time series of moderate resolution, multispectral reflectance data
at the global scale, has enabled development of a family of techniques for estimat-
ing terrestrial productivity based on the concept of vegetation LUE. These models
have evolved from the original arguments of Monteith (1972) that quantum yield
of photosynthesis, the amount of C fixed per unit of incident radiation, can be used
as an organizing principle for estimating overall canopy productivity. There are now
a large number of efficiency models which differ in their details and complexity,
but all are based on the idea that knowledge of incident radiation and the light-
absorbing properties of the plant canopy can determine the maximum potential pho-
tosynthesis for that canopy. That these 2 quantities can be derived from satellite
data has caused an increase in the application of LUE models, also called produc-
tion efficiency models (PEM), as more remote sensing data have become available.

The first remote sensor to produce suitable large-scale data for LUE-based pro-
ductivity modeling was AVHRR, which has been flown on board a series of Na-
tional Oceanographic and Atmospheric Administration (NOAA) satellites from 1981
to the present, providing data at a relatively coarse spatial resolution (1 km). Since
1996, data have also been available through a commercial satellite called Systeme
pour I'Observation de la Terre (SPOT), which has a radiometer (VGT) with simi-
lar properties as AYHRR but with more spectral bands, improved radiometric and
geometric characteristics, and improved capacity for atmospheric correction. A
recent mission led by NASA resulted in two additional satellites called Terra and
Agqua, one with a morning overpass and one with an afternoon overpass. Terra and
Agqua have been in orbit since 1999 and 2002, respectively, and both have an in-
strument called the moderate resolution imaging spectroradiometer (MODIS) that
embodies similar improvements relative to AVHRR and VGT, but data are avail-
able at essentially no cost to researchers.

Monteith (1972) posited that terrestrial ecosystems are living machines whose
metabalism and growth are driven primarily by the thermodynamic force of incom-
ing solar radiation. In this framework, one needs only to consider the breakdown
of efficiencies of use of this energy in order to maodel the individual or aggregate
behavior of vegetated systems. He considered that there were seven factors, each
with its associated efficiency (£), and that the factors control all aspects governing
the ratio between the amount of light incident al the top of the atmosphere and the
eventual amount of fixed C. Thus, three of the factors did not relate to vegetation
characteristics and are currently considered exogenous, for example, the amount
of light transmitted by the atmosphere to the top of the canopy. The remaining four
factors quantified the biochemical conversion and the effects of canopy structure.
Most of the subsequent and current PEM approaches have been applied using coarse
resolution data (1 km? or larger) across regional-to-global scales. These typically
do not consider efficiency at the same level of detail as in Monteith's paper, prima-
rily because of the lack of data at these scales to support the disaggregation of the
canopy biochemical efficiency terms, although some recent research suggests the
possibility of a unification of LUE and other approaches based on radiative trans-
fer modeling,
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Mearly all applications of PEM-type methods using satellite remote sensing data
are based on the idea that the rate of C accumulation by plants (P) depends on en-
vironmental and biochemical factors in the following way:

P=g*A* fAPAR * PAR, (11.3)

where € represents the photochemical conversion efficiency of leaves under opti-
mal conditions (g MJ-'), and A (dimensionless) represents the degree to which ac-
tual conditions are less than optimal. For example, the eifects of moisture,
temperature, or humidity could be represented by decomposing A into a set of sca-
lars that decrement photosynthesis by the appropriate amount. The quantity PAR
(ML} is the amount of photosynthetically active radiation incident on the canopy,
In principle, all the quantities in equation (3) can be time-varying, but the param-
eter that is considered to be the most central for productivity modeling is fAPAR
(dimensionless), the fraction of incoming PAR absorbed by the canopy. This vari-
ahle reflects the changing capacity of the canopy to harvest available light, and its
potential for estimation using multispectral satellite data has driven many applica-
tions of PEMs in large-scale productivity analyses.

The principal variations and uncertainties of LUE models can be explored by
discussing the four terms of equation (11.3). A given LUE-based productivity model,
in a given spatial or temporal context, must assign values for conversion efficiency,
environmental factors, the amount of incident PAR, and the fraction of absorbed
PAR. It is conventional to think of a PEM as being driven by satellite-derived esti-
mates of FTAPAR, with the remaining terms assigned on the basis of field studies,
ather models, or other satellite data, Nevertheless, each of the terms carries its own
assumptions, data requirements, and set of possible approaches.

The biochemical efficiency parameter € represents the key link to plant physi-
ology, but for the typically large spatial scale applications of PEMs { where varia-
tion in £ is poorly known), this parameter is meant to generalize extremely broadly
about the behavior of leaves and canopies. In equation (11.3), P usunally signifies
NPP because £ 1s conventionally determined by observing the amount of plant
dry matter accumulated over time, relative to the total intercepted light. Some
recent studies use a separate model for autotrophic respiration. The meaning of
equation {11.3) remains the same, except that the conversion efficiency refers to
photosynthesis only, or gross primary productivity, Xiao et al, (2004} use the
subscripted forms £, and g, to indicate this important distinction between net and
SIOs8s CONVETSIo.

A persistent challenge for efficiency models in general has been the lack of
understanding of factors controlling variation in £ both within and among vegeta-
tion types. Individual studies have suggested factors such as stand age, species
composition, soil fertility, and foliar nutrients (Gower et al, 19999, but in the ab-
sence of a firm predictive understanding, most PEMs use either a global mean €
value for all vegetation types (Potter et al. 1993) or rely on a lookup table that as-
signs single values for individual biomes {Running et al. 2000). Although these
approaches are satisfactory in many circumstances, measured values of £ vary con-
siderably and, without some means of describing this variability, an important driver
of C assimilation in real ecosystems remains undetected. A meta-analysis by Green



Remote Sensing 213

el al. (2003) offers some promise for how this challenge might be overcome. The
authors compiled published values of € and a variety of leaf and canopy-level traits
from a wide array of C3 plant communities, including deciduous and evergreen tree
species, and herbaceous species consisting of grasses, forbs, and legumes. Their
results showed that of all factors considered, the single variable that explained the
majority of the observed variation in & was the mass-based leaf N concentration.
This result suggests a potentially promising synergy between PEMs and future high
spectral resolution instruments.

The estimation of fTAPAR from satellite data is the central remote sensing re-
search question associated with the development of PEMs. Shortly after the launch
of AVHRR, it was shown that the pattern of differential reflectance of NIR reflec-
tance relative to red reflectance was broadly related to field- based data on foliar
biomass, LAI NPP, and the radiometric quantity fAPAR. These relationships all
fallow from the fact that photosynthesis uses energy in the PAR portion of the spec-
trum without affecting NIR reflectance. Thus, dense plant canopies appear brighter
in the NIR and darker in the visible regions than sparse canopies (fig. 11.2). This
differential reflectance can be summarized with one of several indices, but the most
widely used are NDVI and the SR index {equations [11.1] and [11.2]). Data from
sensors that have a blue band can also be used to calculate an “atmospherically
resistant” index called the enhanced vegetation index:

EVI = G#*(MNIR ~ Red)/(NIR + (C1 * Red - C2*Blue) + L), (11.4}

where the constanis G, C1, C2, and L are chosen to minimize the contaminating
effects of soil and atmosphere variations.

Focusing on TAPAR as the canopy biophysical parameter of interest for PEMs,
there is a theoretical basis for the correlation between these indices and the amount
of PAR absorbed by vegetation (Sellers 1987: Myneni and Williams 1994), but
because of the complexity of the radiation regime of canopies, there is no simple
analytical formula. Sellers {1987) showed that under certain assumptions that prob-
ably gencrally hold true (e.g.. that canopics are approximately twice as optically
thick in the NIR as in the visible), SR is indeed proportional to fAPAR, given a
simplified model of radiation transfer, The SR index is the preferred index for some
PEM maodels (e.g., Potter et al. 1993), but algebraically it can be shown that SR and
NDVT are approximately collinear except for extremely large values of NDVI, With
more complicated models of radiative transfer (e.g., Myneni and Williams 1994),
a conclusion similar to those based on field studies can be reached, which is that
vegetation indices and fAPAR are strongly correlated but also strongly contingent
upon several other local conditions, Those conditions include the state of the atmo-
sphere, the type and color of soil or litter, the fractional ground cover of the canopy,
and the geometry of the observation. Some LUE models (e.g.. Running et al, 2000}
therefore use FAPAR generated by mathematical inversion of the radiative transfer
models, rather than by linear transformation of SR or NDVL

Though PEM models are generally thought of as being at least potentially glo-
bal in scope, most applications have been regional. As can be seen in a review of
the literature, most PEM studies have been performed on crops, rangelands, and
boreal forests, a focus that may reflect the economic value of these ecosystems.
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Figure 11.2. Results of a simple radiative transfer model that illustrate the underlying physi-
cal relationships that form the basis of LUE models. (Top): The differential effect of in-
creasing leaf area index on red (solid line) and NIR (dashed line) reflectance. (Bottom):
The resulting saturation curves for NDVI (solid line) and fAPAR (dashed line). It follows
that NDV1 and fAPAR will be approximately linearly correlated.

More recently, efforts to derive continuous NPP estimates at the global scale by
combining FAPAR-based efficiency algorithms with data from the MODIS satel-
lite have begun to take shape (Running et al. 2004; fig. 11.3). Major limitations of
this approach are the relatively coarse spatial resolution (1 km), the fact that photo-
synthetic efficiency and foliar nutrient concentrations must be held constant within
very general biome categories, and the challenge of validating predictions over such
large spatial scales (e.g., Turner et al. 2003a), Nevertheless, the availability of con-
tinuous global data that can allow continuous monitoring of the NPP response (o
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Figure 11.3. Predicted 2003 NPP over the continental United States, using an efliciency
model designed (o allow global monitoring of NPP with data from the MODIS satellite
{Running et al, 2004).

factors that are accounted for (climate, LAI) is of obvious value for addressing a
range of global-scale issues.

Ecosystem Process Models

Ecosystem process models use remote sensing primarily to initialize important
vegetation input variables and then simulate ecological processes—such as photo-
synthesis, C allocation, respiration, litterfall, decomposition, and water balances—
that affect the NPP of an ecosystem. The added complexity in these models allows
them to predict a range of additional variables and to examine responses to envi-
ronmental factors such as rising CQ,, atmospheric pollution, and physical distur-
bance. Because they are often designed to be run over longer time scales, they are
more suitable for considering changes in ecosystem components such as soil C and
nutrient pools that have very long turnover times.

Rather than reviewing the structure and characteristics of individual models, the
focus here is on the types of input variables on which these models rely that can be
obtained from remote sensing. Methods and sensors available for deriving variables
mentioned in the two previous subsections will not be repeated here (e.g., use of
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Vls for estimating LAT). For a more thorough review of the linkages between eco-
system process models and remote sensing. we direct readers to the review pro-
vided by Turner et al. (2004).

Vegetation Cover Type

As an initial step in parameterization, nearly all models that predict spatially dis-
tributed primary productivity in terrestrial ecosystems require some information
about the vegetation or land cover type being simulated (e.g., Kimball et al. 2000:
Turner et al. 2003b). Because vegetation functional classes are often adapted to
specific sets of environmental conditions, they can differ greatly in terms of basic
properties such as morphology, leaf life span, and C allocation patterns. Land cover
classification maps provide at least a first step toward assigning appropriate values
for the required parameters. Often, the challenge comes with determining how finely
divided vegetation classes should be and how well remote sensing data sources can
detect them.

The requirements of models in terms of specificity of vegetation classifications
depends on the degree to which important parameters vary among different spe-
cies and functional groups, Frequently, modelers face a trade-off between the spa-
tial extent of a particular model application and the degree of parameter specificity
that can be achieved. For instance, development of a broadly aggregated land cover
map of the northeastern United States has allowed regional-scale NPP simulations
to include differences in parameters such as foliar N, specific leaf weight, and leaf
longevity in deciduous, evergreen, and mixed forest types (Ollinger et al. 1998).
However, variation in these parameters within such broad classes can be quite large,
and cannot be captured without more refined vegetation maps or independent meth-
ods of deriving these parameters directly. Additional difficulties are encountered
when bringing together analyses from different regions that use different land cover
classification schemes. At the global scale, efforts have been under way to reach a
standardized classification for major functional types (Friedl et al. 2002), but land-
scape-to-regional efforts that require higher spatial resolution or greater vegetation
specificity often need to derive land cover maps independently (Turner et al. 2003b).

Leaf Area Index and Canopy Height

Because LAI provides a measure of the foliar surface arca available for capturing
solar radiation, models that base productivity on photosynthetic rates calculated over
multilayered plant canopies often require an explicit LAT input (¢.g., Running and
Gower 1991; Liu et al, 1999). As described carlier, LAl estimates are often derived
using simple VIs, but here, too, the problem of saturation in high LA systems is an
important challenge (Turner et al. 1999). Methods that involve use of multiple Vis
and multiple image collection dates offer some improvement over single VI meth-
ods (Cohen et al. 2003), and new methods involving active sensors may offer fur-
ther improvement still. For example, INSAR and Lidar instruments {described in
later sections) offer the benefit of sampling the vertical foliage distribution, giving
them the capacity to provide detailed information on LAI as well as canopy height
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(Lefsky et al. 2002a; Treuhaft et al. 2004). Hurtt et al. (2004) demonstrated the utility
of this type of data by combining information on vertical structure in a Costa Rican
rain forest with a height-structured vegetation model (Moaorcroft et al. 2001).

Foliar N

The positive relationship between foliar N concentrations and maximum rates of
net photosynthesis has been demonstrated for a large number of biomes and plant
functional types, and has become a core component of a number of process-based
ecosystem models (Running and Gower 1991; Comins and McMurtrie 1993; Aber
et al. 1995). Spatial variation in foliar N is driven by a variety of interrelated fac-
tors, including species composition, site disturbance history, soil N, water avail-
ability, and climate (Yin 1993; Ollinger et al. 2002). Although foliar N variation is
often assumed to be primarily of local importance, variation over broad spatial scales
can be substantial, and is believed to be driven by the effects of climate and radia-
tion on patterns of optimal N allocation in plants (Yin 1993; Haxeltine and Prentice
1996).

To date, only a small number of studies have made use of remotely sensed foliar
N data as input for spatially distributed ecosystem models, but substantial improve-
ments in prediction accuracy have been obtained over similar efforts where foliar
N data were lacking. In one such example, Ollinger and Smith (2005) used the PnET
ecosystem model to predict NPP at 18 m spatial resolution for the Bartlett Experi-
mental Forest in north-central New Hampshire, and evaluated predictions using field
measurements from a network of 39 inventory plots, When the model was run using
mean foliar N values for deciduous, evergreen, and mixed forest types, agreement
was reasonable in terms of the overall mean for the entire study area, but was poor
on a plot-by-plot basis, When the model was run with foliar N inputs derived using
the AVIRIS instrument, predictions showed a much higher degree of plot-level
apgreement and revealed landscape-scale spatial patters associated with topogra-
phy and forest management history (fig. 11.4).

Vegetation Properties Using Active Sensors

An active sensor transmits electromagnetic radiation, which is reflected from ele-
ments of the Earth's surface. These reflected signals travel back to the sensor, where
their detection enables estimation of properties of the vegetation or ground surface.
The two types of active sensors discussed in this section are radar (microwave) and
lidar (optical). Although passive microwave sensors have useful sensitivities to the
quantities of interest in the NPP measurement (Pampaloni 2004} with 5- to 10-km
resolution, active microwave sensors provide 5- 1o 100-m resolution. Another ad-
vanlage of active over passive sensors is that both microwave and optical active
sensors enable vegetation structure measurements via received phases or time de-
lays, as will be described below. Active measurements, however, are generally more
expensive and complex, because they require transmitting as well as receiving hard-
ware on spacecraft or aircraft.



218 Principles and Standards for Measuring Primary Production

800 | aviris N .
- L] \_."'-
T 40(}! s
E o
D200 }.‘Efi‘ i
§ | o™ R?=0.73
g o[~
]
% 800 | Mean N by Cover »
."'-‘-'
=] Type -
> 400 | I,_! b
E ___."'“ " l
y L A o & T 200 . o
. _— - i | “‘_‘__.f". ’ RE= E.ZT)|
;"""—1 Kilametars 0 | . . . | . 1 .
-2 1
_Wg;:ﬁ}:_ 0 20 40 @0
— - - Measured Wood Production

{gm?yr')

Figure 11.4, Map of predicted NPP (g m® yr') for the Bartlewt Experimental Forest, NH,
generated using AVIRIS-derived foliar N as input to the PnET ecosystem model. Shadow-
ing indicates local topography. Al right are comparisons of predicted and observed wood
growth, first using the AVIRIS foliar N inputs (top) and then using mean foliar N values for
deciduous, evergreen, and mixed cover types (bottom). Redrawn from Ollinger and Smith
(2005). (See the cover for a color version,)

Whether microwave or optical, active remote sensing detects reflections of a trans-
mitted beam from components of a vegetated lund surface. Clectromagnetic reflec-
tions arise whenever there is a discontinuity in a key electromagnetic property called
the “dielectric constant.” The dielectric constant of an object—a leal, branch, trunk,
or the ground—depends on its chemical composition. lis square root is inversely pro-
portional to the speed with which an electromagnetic wave propagates in the medium,
and directly proportional to how much of it is absorbed, Vegetation and ground sur-
faces reflect because their dielectric constants are higher than that of air, creating
dielectric discontinuities at their surfaces. Figure 11.5 shows schematically that the
signal reflected back to an active sensor depends on both the strength and the number
of the discontinuities as well as on the organization of the reflecting objects in the
scene. That is, it depends on what the objects are, how many there are, and where
they are. The following subsections describe two conceptual ways in which radar and
lidar sensors can contribute to estimating NPP in ecosystems (1) by determining bio-
mass at multiple time periods and therchy estimating a biomass change rate (mul-
tiple-epoch biomass method), and (2) by determining other properties of the vegetation
which, when combined with empirical production algorithms or process models, such
as those described earlier, directly correlate with NPP (direct NPP correlate method).
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Sensor

Figure 11.5. A schematic demonstration indicating that (Left) a strong reflection from the
dark object, indicated by dark black wavefront lines, and a weaker one from the light object
have an additive effect on the signal detected at the sensor, (Right) With the same 2 reflect-
ing objects, the signal from the dark object is altenuated if it is vertically behind the light
object. The total received signal will be weaker than that of the left portion of the figure,
though the reflecting objects are the same; only their spatial locations have changed.

Radar Measurements: Biomass and
Its Accumulation over Time

The application of radar to estimates of NPP is in its infancy. Nevertheless, given
the direct relevance of radar sensors to measurements of vegetation biomass, a re-
view of the prospects for estimating NPP with products currently derived from radar
is warranted. There are two types of radar that potentially can be applied 10 NPP
measurements (fig. 11.6): (1) synthetic aperture radar (SAR) and (2) interferomet-
ric synthetic aperture radar (InSAR). SAR is primarily sensitive to the amount of
vegetation in a scene, and InSAR is primarily sensitive to the vertical distribution
of the vegetation.

Before proceeding, it should be stressed that vegetation biomass, biomass accu-
mulation, and NPP are three distinct properties, and relationships among them vary
over time and between ecosystems. Hence, the ability 1o detect biomass or ils accu-
mulation over time does not translate directly to an ability to estimate NPP, The
relationship between NPP and biomass accumulation on a vegetated land surface
can be generalized as follows:

NPP = Increase in standing biomass
+ Biomass lost to mortality and litter production, (11.5)

where the contributions of herbivory and C exudates are ignored. In young sys-
tems dominated by perennial vegetation, biomass accumulation can represent a large
fraction of NPP because growth rates tend to be considerably higher than death rates.
In maturing systems, however, biomass accumulation declines and typically
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Figure 11.6. (Top) SAR uses | sensor to receive power reflected back to it by 2 green
schematic vegetation components, SAR is sensitive to the powers induced by the compo-
nents, but not to their location, (Bottom): InSAR uses 2 sensors and is sensitive to the pow-
ers as well as the vertical location of the scatterers via the differences in path length of each
component to the 2 sensors,

becomes small with respect to NPP, due to increasing rates of both mortality and
litterfall. In systems dominated by annual grasses and herbs, changes in biomass
can be equal to NPP over seasonal time scales, but independent of NPP when viewed
over multiple years. Despite the variability in NPP-biomass relationships, most NPP
estimation methods require knowledge of biomass at some stage of their applica-
tion. Hence, methods of direct biomass detection are often beneficial, particularly
where estimates of other important properties are available. This section discusses
how biomass measurements are made with radar and the prospects of using mul-
tiple-epoch measurements to estimate a rate useful to NPP determination.
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Biomass from SAR

Dualitatively, SAR measures the power of the returning signal due to vegetation
using a single sensor (Tig, 11.6a). SAR is direcily sensitive only to the strength and
number of the dielectric discontinuities, as suggested by figures 11.5 and 1 1.6, While
SAR is alTected by the location of components of reflecting surfaces—ithe signal at
the sensor in figure 11.5 (right) is weaker than that of 11.5 {left)—SAR cannot tell
the difference between changes in location and changes in component strength and
number. In figure 11.6a, the received signal is independent of the vertical position
of the 2 schematic vegetation elements shown.

For microwave radiation, the dielectric discontinuities depend principally on the
water content of the vegetation or the ground surface, More discontinuities mean,
for example, more foliage, which in turn can mean more biomass. SAR estimations
of hiomass (e.g., Dobson et al. 1995; Paloscia et al. 1999; Santos et al. 2003) as-
sume that more power means more biomass, The biomass estimation procedure starts
with the following general, often empirical, relationship between biomass and SAR
powers:

flbiomass) = g(SAR power,, SAR power, . . . SAR powery,
parameters, ) (11.6)

where fis some function of the biomass and g 15 another function of SAR powers 1
through N and parameters 1 through M. The parameters must be determined by
test plots, and then applied to other plots to estimate biomass, using equation (11.6).
The internal consistency of equation (11.6) for a single set of plots is also used to
demonstrate biomass estimation and gauge its error.

The different SAR powers in equation (6) arise from differences in polariza-
tion (Marion 1965) and frequency. Using SAR of different polarizations improves
vegetation and surface characterization if there are “oriented” objects, such as
the ground ( Papathanassiou and Cloude 2001). Generally, lower frequencies (e.g.,
P-band at 80 cm wavelength) penetrate further into vegetation and scatter from
larger objects than higher frequencies (C-band at 6 cm wavelength and X-band
at 3-cm wavelength). Spaceborne demonstrations of biomass estimation have used
JERS (Japanese Earth Resources Satellite, L-band, 25 em), ERS (European Re-
mote Sensing, C-band ), RadurSAT (C-band), and SIR-C {Shuttle Imaging Radar,
L-, C-, X-band).

Assigning a single accuracy to biomass estimation with SAR is difficult because
virtually every study uses different forms of fand g in equation (6), and different
numbers of parameters and input SAR powers. Forest biomass typically falls within
the range of 0-700 Mg/ha, and is often less than 300 Mg/ha, except for tropical and
old-growth forests, which populate the high end of the range. Average errors with
1-3 parameters in equation (6) have been reported in the 30% range with JERS-1
(Luckman et al. 1998). Some experiments which sort results by species, struciure,
or other metrics using more ground data show errors of less than 10% with SIE-C
(Dobson etal. 1995). Many reports say that the estimation error may be due in large
part to field measurement error, in which case the intrinsic radar error might be much
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smaller than the above, This hypothesis has yet to be carefully tested for SAR
experiments.

Virtually all experiments agree with the implications of figure 11.5 regarding
the ambiguity introduced by vegetation structure (e.g., Imhoff 1995). Although SAR
powers respond to vegetation vertical structure, they cannot be used to uniguely
specify the structure. A lack of knowledge regarding structure induces errors in the
conversion of radar observations to biomass, as in equation (6). Figure 11.5, for
example, would be interpreted as two different biomasses, though only the vertical
organization of the vegetation differs between the figures,

Two salient features are used to describe biomass estimation nccuracy, the loca-
tion of the “saturation point,” where the curve flattens out, and the scatter about a
smooth trend (fig. 11.7, top). The satwration point generally occurs at lower biom-
asses for higher frequencies. The scatter indicates the biomass error. In the figure,
below 100 Mg/ha, for example, scatters indicate that an approximate range of 10-
20 Mg/ha of biomass, 20-40% of the biomass, could correspond to a single radar
power.

Biomass from InSAR

InSAR utilizes two receivers to view the vegetation from two different perspec-
tives (fig. 11.6b). In addition to being sensitive to the reflecting strength and the
number of vegetation components, InSAR is directly sensitive to the altitudes of
the components of the vegetation above the ground surface via the path length dif-
ference from each component to the two sensors (Treuhaft et al. 1996). A single
InSAR observation yields an InSAR phase, proportional to the average height of
the vegetated surface, and an InSAR coherence, which decreases as the vegetation
becomes more vertically distributed (Treuhaft et al. 2004). If one receiver is flown
by a site at two different positions, a repeat-track baseline is formed. If there are
two real receivers, an instantaneous baseline is formed. Biomass estimation has been
reported a few times using repeat-track, spaceborne baselines of ERS and JERS 1
{Luckman et al. 2000; Santoro et al. 2002; Askne et al. 2003; Pulliainen et al. 2003;
Wagner et al. 2003). The repeat-track studies, which derive their sensitivity io veg-
etation volumes from the changes in the scene during the observation epochs, gen-
erally show that C-band InSAR is much more useful for biomass estimation than
C-band SAR. This conclusion is further supported for fixed-baseline InSAR by a
simple model calculation (Treuhaft and Siqueira 2004), ERS repeat-track InSAR
passes generally outperform JERS-1 because 1-day repeats could be obtained with
the ERS-1 and ERS-2 satellites, whereas JERS repeated in 45 days. With longer
repeat times, the degree of decrease in coherence no longer discriminates between
different volumes of the forest, as it does for 1-day repeats (Askne et al. 2003), owing
to excessive coherence loss induced by scene changes between repeat tracks. For
frozen boreal forests, Santoro et al. (2002) and Askne et al. (2003) report the best
biomass estimation precision using repeat-track InSAR coherence from ERS-1 and
ERS-2 of about 25% on 2-20-ha stands of up to about 200 Mg/ha.

Biomass estimation has been reported only once, using instantaneous baselines
from the airborne AirSAR (Treuhaft et al. 2003). In the instantaneous baseline
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experiment, the phases and coherences from six C-band baselines were used to
estimate the vertical profile of leaf area density (LAD) for stands predominantly of
ponderosa pine, grand fir, and larch in the Metolius River basin in central Oregon.
Multiple baselines are required to estimate vertical profiles (Treuhaft et al. 2002)
and, generally, multiple baseline, multiple polarization (Papathanassiou and Cloude
2001), multiple frequency, or ancillary information (Treuhaft et al. 1996; Kellndorfer
et al. 2004) is required to quantitatively estimate vertical characteristics of forests.
The profiles estimated in the multiple-baseline biomass experiment were normal-
ized by LAls estimated from airborne hyperspectral data from AVIRIS. Unlike
equation (11.6) or the repeat-track InSAR experiments, biomass was correlated with
structural variables estimated from the remote sensing rather than raw observations.
Specifically, figure 11.7 (bottom) shows field biomass versus remole sensing bio-
mass, calculated as

biomass = a + b (LAI*G . + (2ran) (1.7

where LAI is the leaf area index from hyperspeciral data, G 4y is the standard
deviation of the LAD distribution from InSAR, (z);4 is the LAD-averaged veg-
etation height from InSAR, and a and b are best-fit parameters. The scatter of the
remote sensing about the field measurements was 25 Mg/ha, or about 16% of the
average biomass of the 1-ha stands. Note that biomass reported from C-band SAR
power saturates at about 50 Mg/ha (Imhoff 1995), but there is little evidence of
saturation based on C-band InSAR (fig. 11.7, bottom). This further suggests that
InSAR saturation characteristics are more favorable than those of SAR for bio-
mass estimation. Furthermore, the accuracy indicated by the scatter of figure 11.7
(hottomy) is better than most two-parameter determinations from radar power, and
is about the same as the best lidar determinations (e.g., Drake et al. 2002). Addi-
tionally, Treuhaft et al. (2003) estimate about a 15% error in the field biomass
measurements, possibly implying very high performance for the remote sensing
technigue. As noted above, an experiment in which the field errors were reduced
substantially would have to be conducted to claim much higher accuracy for
InSAR-based remote sensing.

Though the results of figure 11.7 (bottom) are significant with 99.5% confidence,
they are the first of their kind, sample only one conifer forest, are based on only 11
stands, and must be regarded as a suggestion of the potential of InSAR-determined,
structure-based biomass, rather than a demonstration of reliable performance. Ex-
tensive tests of the InSAR-profiling approach in other vegetation types are needed.
Although virtually every study using radar power to estimate biomass cites unknown
structure ambiguities (e.g., fig. 11.5), studies in which estimated InSAR structure
is used to interpret and correct radar power estimation have yet to be done.

Multiple-Epoch Biomass Estimates

In young, rapidly aggrading ecosystems, where the accumulation of biomass over
time represents an important fraction of NPP, radar-based biomass estimates have
a clear application when acquired over two or more time periods. In more mature
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Figure 11.7. (Top): Radar P-band backscatter power versus ield biomass in tropical forest
stands of (0, |-0.25 ha, showing typical increases of power with biomass and a flattening out
or saturation of power versus biomass at higher biomasses. Triangles are primary forest,
and circles are secondary succession. The line is the function indicated. Redrawn from Santos
et al. (2003). (Bottom): Biomass from C-band InSAR and hyperspectral remote sensing ver-
sus field biomass for 11 stands of ponderosa pine, grand fir, and larch in central Oregon.
Relative vertical leaf area density profiles were estimated from multiple-baseline InSAR
using AirSAR and normalized by a leaf urea index from AVIRIS hyperspectral data. The
line is v = x. Redrawn from Treuhaft et al. 2003,

syslems, as standing biomass reaches its maximum, biomass accumulation declines
toward zero, and the importance of combining biomass estimates with measure-
ments of ingrowth, mortality, and litter production becomes paramount. In the
maturing forests of eastern North America, for example, the incremental change in
biomass is often less than 10% of NPP on an annunal basis, and is an even smaller
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fraction of the standing biomass observed at any one time. In such cases, biomass
must be remotely sensed with a few percent accuracy in any one year to contribute
meaningfully to NPP determination using multiyear estimates. This can plausibly
be accomplished with repeated measurements using InSAR and to a lesser degree
with SAR. Multiple InSAR coherence-based experiments have yielded approxi-
mately 1 3% necuracy in biomass retrieval over boreal forests (Santoro et al. 2002),
whereas Salas et al. (2002) suggested that repeated SAR measurements yielded
accuracies at the 30% level. Higher accuracies could also be accomplished with
fewer measurements if the fundamental performances of the SAR and InSAR ap-
proaches were improved. Quantifying the accuracy of the field measurements them-
selves will also be important (o further the assessment of radar-based methods.

Virtually all radar biomass demonstrations that could be used in the multiple-
epoch method measure aboveground biomass. Belowground NPP can be equal o
20%—50% of the aboveground NPP (Gower et al. 1992, Fahey et al. 2005). There-
fore, to date, radar biomass measurements can be used only for the aboveground
component of NPP, rather than the total NPP. The degree to which aboveground
biomass rate can be reliably correlated with belowground biomass must be inves-
tigated, perhaps along with structural correlates from InSAR and lidar,

Biomass accumulation estimates using radar-based approaches are nlso possible
in grasslands, crops, and herbaceous communities, although measuremenis are re-
quired over seasonal, rather than annual, time scales. In one example, Moreau and
Le Toan (2003) show approximately 30%—50% biomass estimation accuracy for
water-saturated grasslands observed at C-band with ERS. Ferrazzoli et al. (1997)
obtained an accuracy of about S0% in the estimation of aboveground crop biomass
using P-, L-, and C-band AirSAR over plots containing corn, sunflowers, sorghum,
and wheat. These accuracies should transltate to NPP accuracies of about the same
order, but a correlative analysis of aboveground and belowground NPP would in-
dicate the performance for the larger belowground component. Furthermore, ob-
served accuracies depend somewhat on the availability of a so-called ground bounce
due to the water in the ground. The task of correcting for standing dead tissues rep-
resents an additional challenge, though one which may be minimized in systems
that are annually burned or harvested.,

Radar Measurements: Direct NPP Correlates

This section outlines the potential for estimating biophysical quantities from radar
observations which comrelate directly with rates of NPP. This link could be achieved
through use of empirical algorithms or via process models, Because there arc few
examples of this approach in the literature, the discussion will be brief. As men-
tioned above, SAR correlates primarily with the amount of material, or the
aboveground biomass, in a vegetated land surface. Under some circumstances, the
biomass itself, rather than the biomass change between (wo or more time periods,
could be considered as an NPP correlate. Across biomes, there is a coarse relation-
ship between biomass and aboveground NPP (Webb et al, 1983), Within biomes,
however, wide variation around this trend can be expected from [actors such as stand
age, species composition, disturbance history, and edaphic properties. Biomass from
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SIR-C/X-SAR has been used with an allometric model of aboveground NPP (Bergen
and Dobson 1999), but many additional field constraints were required. It is pos-
sible that with adequate ancillary information and sufficient diversity in frequency
and polarization, this approach could represent a useful complement 1o other NPP
detection methods.

Structural properties retrieved from InSAR are affected by factors such as spe-
cies composition, stem density, stand age, and vegetation height, all of which re-
late to NPP in some way or another (Waring and Running 1998; Mencuccini and
Girace 1996; Kicklighter et al. 1999; Smith et al. 1999). As an example, secondary
forests that are in an early state of regrowth following harvesting contain less bio-
mass, but are often more productive than more mature forests (Pregitzer and
Euskirchen 2004). Hence, their vertical structure as measured by InSAR may well
be useful as a correlate with NPP, although here, too, information regarding other
properties of the sites and vegetation conditions would likely be required. The op-
timal means of direct-correlate estimation from InSAR and other technigues, per-
haps combined with ¢limate inputs that can also be derived from remote sensing
(¢.g., Running et al. 2004), are subjects for future research.

Lidar Measurements

Laser altimetry, (or lidar, light detection and ranging) is an emerging remote sens-
ing technology with a variety of applications of interest to terrestrial ecologists (Lim
et al, 2003; Dubayah and Drake 2000; Wehr and Lohr 1999; Lefsky et al. 2001,
2002a). Lidar-derived metrics have proven effective for predicting ecological vari-
ables such as canopy height and structure, the density of forest cover, biomass, and
light transmittance (Drake et al. 2002; Lefsky et al. 2002a; Means et al. 1999;
Harding et al. 2001; Parker et al. 2001). In particular, the demonstrated capability
of lidar to characterize the amount of standing biomass in an ecosystem provides a
strong foundation for determining rates of primary productivity (but note the pre-
vious discussion on distinctions and relationships between bivmiss and productiv-
ity). After a description of the lidar measurement, the multiple-epoch biomass
method from lidar data will be followed by the direct NPP correlate method, just as
in the radar section.

The Lidar Measurement

The basic measurement made by a lidar device is the distance between the sensor
and the target, obtained by an accurate measurement of the time ¢lapsed between a
pulsed signal emission and the return signal. Lidar instruments currently in use can
be described as either discrete return or full waveform lidar (Lim et al, 2003), Dis-
crete return lidar instruments measure a single (or a few) vertical distance(s) within
the lidar footprint, often the first and last signal returns. Discrete return lidar in-
struments typically operate at a high spatial frequency, with a small footprint, and
are optimized to provide detailed information on ground elevation and canopy sur-
face. In contrast, waveform recording lidar instruments record the time-varying
intensity of the return signal, and thereby yield an increased amount of information
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Figure 11.8. Full waveform lidar example. (Top): Canopy simulation derived from field
measurcments, (Bottom): Waveform data corresponding to the canopy depicted at top, in-
dicating the fully digitized waveform data and ground elevation, top of canopy, and height
of median energy in the return signal. Data from a 2003 LVIS flight over the Bartlett Ex-
perimental Forest, Bartlett, NH.

aboveground biomass can be explained by lidar metrics (Lefsky et al. 1999a, 1999b,
2005a: Means et al. 1999; Nilsson 1996; Drake et al. 2002). These studies have
been conducted in a number of different biomes, including temperate deciduous,
temperate coniferous, tropical wet forest, and boreal coniferous biomes. In addition,
Lefsky et al. (2002b, 2005b) and Drake et al. (2003) have begun exploring the gen-
erality of relationships between lidar metrics and allometric estimates of above-ground
biomass across contrasting biomes and among sites of different productivities within
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a biome. Further investigations of these cross- and within-biome relationships will
play a significant role in scaling from small-scale airborne lidar estimates of bio-
mass to large-scale estimates from future spaceborne lidar instruments.

To date, few spatially coincident lidar data sets have been collected over mul-
tiple time periods. In a space-for-time substitution, Lelsky et al. (2005a) described
a spatially extensive approach to estimating the woody component of aboveground
NPP (NPP,,) based on deriving stand age and biomass in landscapes subject to
stand-replacing disturbance regimes from Landsat and lidar data products. Stand
age is derived by iterative unsupervised classification of a multitemporal sequence
of images from a passive optical sensor (e.g., Landsat TM), Stand age is then cross-
tabulated with estimates of stand height and aboveground biomass from lidar re-
mote sensing. NPP,, is calculated as the average increment in lidar-estimated
biomass over the time period determined, using change detection. This approach
compared well with forest inventory estimates, but contrasted significantly with
estimates derived from a spatially distributed biogeochemistry model (Lefsky et
al, 2005a).

Model Parameters and NPP Correlates
from Lidar Observations

A second approach uses lidar metrics as input data to ecosystem models that esti-
mate NPP. Modeling studies have demonstrated the utility of lidar data in the pro-
duction of input parameters such as tree height and vertical foliage distribution,
which more accurately define current canopy conditions and relate directly to rates
of productivity. Kotchenova et al, (2004) demonstrated the use of waveform lidar
in modeling gross primary production (GPP) of deciduous forests. They parameter-
ized a photosynthesis model using standard sunlit/shaded leaf separation (two-leaf)
and muliiple layer approaches, Model simulations using a uniform leaf distribu-
tion versus a vertical leaf distribution derived from waveform lidar resulied in large
differences in the calculated GPP values, and demonstrated the importance of ver-
tical canopy structure in determining both the distribution of direct and diffuse light
within the canopy and the distribution of sunlit and shaded leaves, Hurttet al. (2004)
combined lidar-derived canopy height with a height-structured terrestrial ecosys-
tem model called the ecosystem demography model (ED; Moorcroft et al. 2001},
The use of lidar-derived height in this model allowed the model to be initialized
with actual vegetation structure, in contrast to polential vegetation conditions,
thereby accounting for the effects of land use history and disturbance on standing
biomass and C flux.

Collectively, these recent studies combine to illustrate the potential utility of
developing lidar technologies to improve estimates of aboveground biomass, Al-
though lidar, like other remote sensing instrumentation, cannot directly measure
NPP, the ability to measure vegetation structural attributes, aboveground biom-
ass, and change in biomass over time from airborne and/or spaceborne platforms
should help to increase our understanding of trends in NPP at local and regional
scales.
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Concluding Remarks

In reviewing approaches for applying remote sensing to the study of terrestrial NPP,
it should be clear that a wide variety of methods exists, and each has its own set of
inherent strengths and limitations relative to factors such as spatial scale and reso-
lution, frequency of data collection, the nature of the ecological properties that can
be captured, and the ability to examine the influence of changing environmental
conditions. Methods that rely on broadband vegetation indices, for example, can
be applied al regular intervals over continental spatial scales, given the large scene
size and regular orbits of sensors such as MODIS and AVHRR. However, their
coarse spatial resolution (often ~1 km) and limited spectral detail often don’t pro-
vide the detail needed to capture fine-scale features of interest to researchers and
managers working at subregional scales, Methods involving imaging spectroscopy
or active sensors may account for finer-scale variation related to additional vegeta-
tion attributes (e.g., biomass or biochemistry), but presently cover smaller portions
of the Earth's surface or do not collect data at frequent intervals.

Despite these differences, a common feature of all remote sensing methods is their
ability to increase dramatically the amount of land surface that can be sampled, often
providing spatially contiguous information at multiple periods in time. As such,
remole sensing provides a complement to field measurements by filling gaps be-
tween measurements at individual locations and specific points in time. Because
nearly all remote sensing methods are in some way or another built up from ground-
level measurements—be they measurements of leaf physiology, canopy-light in-
teractions, or stand productivity—remote sensing should be seen as an extension
of other methods, rather than divorced from them.

An aspect of remote sensing that is beyond the scope of this chapter, but worth
mentioning nonetheless, is the potential to use remoiely sensed spatial patterns as
a means of examining underlying controls on ecosystem productivity. Whereas field
plots typically capture limited samples of the environmental conditions in which
ecosystems exist, the large sample sizes provided by remote sensing instruments
allow NPP estimates to be contrasted with spatial and/or temporal patterns of im-
portant variables, such as climate, topography, and soil properties. Exlensive data
for variables such as these often exist in the form of geographic information sys-
tems or climatological databases, and can be used to shed light on mechanisms
controlling variation in NPP (e.g., Braswell et al. 1997). Analyses of this nature
should open the minds of researchers to the potential role of remote sensing in basic
ecological research,
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