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Environmental variation is directly responsible for short-
but not long-term variation in forest-atmosphere carbon
exchange
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Abstract

Tower-based eddy covariance measurements of forest-atmosphere carbon dioxide (CO2)

exchange from many sites around the world indicate that there is considerable year-

to-year variation in net ecosystem exchange (NEE). Here, we use a statistical modeling

approach to partition the interannual variability in NEE (and its component fluxes,

ecosystem respiration, Reco, and gross photosynthesis, Pgross) into two main effects:

variation in environmental drivers (air and soil temperature, solar radiation, vapor

pressure deficit, and soil water content) and variation in the biotic response to this

environmental forcing (as characterized by the model parameters). The model is applied

to a 9-year data set from the Howland AmeriFlux site, a spruce-dominated forest in Maine,

USA. Gap-filled flux measurements at this site indicate that the forest has been seques-

tering, on average, 190 g C m�2 yr�1, with a range from 130 to 270 g C m�2 yr�1. Our fitted

model predicts somewhat more uptake (mean 270 g C m�2 yr�1), but interannual variation

is similar, and wavelet variance analyses indicate good agreement between tower

measurements and model predictions across a wide range of timescales (hours to years).

Associated with the interannual variation in NEE are clear differences among years in

model parameters for both Reco and Pgross. Analysis of model predictions suggests that, at

the annual time step, about 40% of the variance in modeled NEE can be attributed to

variation in environmental drivers, and 55% to variation in the biotic response to this

forcing. As model predictions are aggregated at longer timescales (from individual days to

months to calendar year), variation in environmental drivers becomes progressively less

important, and variation in the biotic response becomes progressively more important, in

determining the modeled flux. There is a strong negative correlation between modeled

annual Pgross and Reco (r 5�0.93, P�0.001); two possible explanations for this correlation

are discussed. The correlation promotes homeostasis of NEE: the interannual variation in

modeled NEE is substantially less than that for either Pgross or Reco
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Introduction

In the same way that whole-watershed studies trans-

formed the study of ecosystem ecology in the 1960s and

1970s (e.g. Likens & Bormann, 1995), application of the

eddy covariance (EC) approach to the study of ecosys-

tem-scale fluxes of energy, water vapor, and carbon

dioxide (CO2) has again revolutionized the field by

enabling the continuous measurement of key ecosystem

processes (Baldocchi et al., 1988; Baldocchi, 2003). The

global network of EC towers in a diverse array of

ecosystems (FluxNet and its associated regional net-

works, such as AmeriFlux and EuroFlux; see Baldocchi
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et al., 2001) provides the infrastructure necessary to

study these processes across a range of spatial and

temporal scales (e.g. Valentini et al., 2000; Janssens

et al., 2001; Law et al., 2002). Results from the monitoring

network have added significance because of what is

seen as a pressing need to better understand the role

terrestrial ecosystems play in the global carbon cycle

(Baldocchi et al., 1996; Braswell et al., 1997; Schimel et al.,

2001; Wofsy & Harriss, 2002).

One of the earliest, and still most significant, results to

emerge from multiyear EC studies was an estimate of

the magnitude of the year-to-year variation, commonly

referred to as interannual variability, in the net ecosys-

tem exchange (NEE) of CO2. At a temperate deciduous

site where NEE ranged between �140 and

�280 g C m�2 yr�1, above-average uptake in 1 year

was attributed to increased photosynthesis, and in

another year to decreased respiration (Goulden et al.,

1996a). At a boreal coniferous forest, the ecosystem was

a carbon source (1 70 g C m�2 yr�1) in 1 year but a weak

carbon sink (�10 g C m�2 yr�1) 2 years later; the varia-

tion in carbon balance was attributed to respiration,

which was controlled by the depth and duration of soil

thaw (Goulden et al., 1998). Multisite syntheses indicate

that interannual variability in net exchange is a uni-

versal characteristic of flux sites around the world

(Baldocchi et al., 2001).

Because NEE is a relatively small difference between

two much larger sums (ecosystem respiration and gross

photosynthesis; Valentini et al., 2000), and because EC

data are inherently noisy (Hollinger & Richardson,

2005), there may have been initial concern that the

measured interannual variation in NEE had more to

do with the shortcomings of the method, rather than

actual year-to-year differences in carbon sequestration.

However, error and uncertainty analyses (Goulden

et al., 1996b; Morgenstern et al., 2004), paired towers

(Hollinger et al., 2004; Hollinger & Richardson, 2005),

intercomparison with a roving set of reference instru-

mentation (Baldocchi et al., 2001; D. Y. Hollinger et al.,

unpublished data), and cross-biome modeling efforts

(Schimel et al., 2000; Raich et al., 2002) provide conclu-

sive support for the idea that the measured interannual

variation in NEE is real.

Modeling interannual variation in NEE has proven

challenging. It is necessary that the basic processes

underlying CO2 uptake (photosynthesis) and release

(respiration) both be modeled well, so as to avoid

compensating errors. This is also an important consid-

eration if models are to be used for prognostic purposes,

(i.e. to make predictions about terrestrial carbon cycle

implications of future climatic scenarios). Because the

interannual variation in NEE is much smaller than

seasonal or spatial variation in photosynthesis and

respiration, it therefore represents an extreme test for

models, which may otherwise appear to adequately

capture temporal or global variation in CO2 fluxes.

For example, Hanson et al. (2004) used a range of

ecosystem models (including BIOME-BGC, CANOAK,

Ecosys, Ealco, LoTEC, and PnET-II) to predict annual

NEE and net primary productivity (NPP) of the Oak

Ridge AmeriFlux site for the years 1993–2000. Based on

their Table 12, there was no significant correlation

between the annual predictions of any of the models

and the observed interannual variation in NEE (based

on 5 years eddy flux data) or NPP (based on 8 years of

biometric data). Furthermore, there was only weak

agreement among the model predictions of interannual

variation in NEE: of the 28 possible paired model

comparisons, only six were significantly correlated

(Po0.05) at the annual time step. More recently,

Siqueira et al. (2006) used spectral analysis to assess

the ability of four models to capture flux variation

across a range of time scales and found that the models

were ‘inconsistent’ at the interannual timestep.

Although some models appeared to perform well at

the interannual scale, Siqueira et al. attributed this result

to the cancellation of offsetting errors.

Multiyear EC datasets provide the tools to address

the causes of interannual variability in NEE. To date,

however, most such studies have attributed (either

explicitly or implicitly) the interannual variation in

NEE entirely to interannual environmental variation,

(i.e. variation in climatic drivers such as air or soil

temperature, solar radiation, or precipitation). In many

cases, this attribution has been anecdotal, as few flux

data sets are long enough to permit rigorous statistical

analysis (but see Aubinet et al., 2002; Carrara et al., 2003;

Hollinger et al., 2004). Lagged correlation analyses have

suggested relationships between climate anomalies and

subsequent flux anomalies (Barford et al., 2001),

but these relationships may differ among ecosystems

(Hollinger et al., 2004).

While environmental variation is important, inter-

annual variability in net exchange may also be due to

changes in the biotic response to the environmental

forcing (Schimel et al., 2001; Wang et al., 2004) of either

(or both) of the underlying processes. Such changes

could be due to variation either in the basal or max-

imum rate of a process (e.g. maximum photosynthetic

uptake), or in the sensitivity of the process to environ-

mental drivers (e.g. temperature response of respira-

tion), or changes in the size of carbon or nutrient pools.

By combining EC data with simple, physiologically

based ecosystem models driven by basic environmental

data, researchers have the ability to address relation-

ships between ecosystem processes and the abiotic

environment (Baldocchi, 2003). If there was significant
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interannual variation in the biotic response to environ-

mental forcing, then the fitted model parameters would

be expected to differ among years. Interannual varia-

bility in canopy-level photosynthetic capacity could be

due to acclimation to prevailing light regimes, variation

in foliar nutrient status (in particular, N content and

consequent photosynthetic capacity), or changes in leaf

area index (Flanagan et al., 2002). Interannual variability

in basal respiration could be due to the quantity and

quality of the available substrate – for heterotrophic soil

respiration, this depends on previous production (espe-

cially litterfall from the most recent growing season),

but for root respiration, it depends on current produc-

tion (Janssens et al., 2001). Results of Lee et al. (1999),

Chen et al. (1999), Flanagan et al. (2002), and Hollinger

et al. (2004), for example, document (but do not explain

the causes of) interannual variation in photosynthetic

capacity or respiration rates in a variety of different

biomes. The causes of this variation could include direct

climatic effects, as well as indirect or lagged (at various

time scales) climatic effects, and also independent fac-

tors such as disturbance.

To fully understand the interannual variation in NEE,

it is therefore necessary to consider not only the inter-

annual variation in environmental drivers but also the

variation in the biotic response to these drivers. Hui

et al. (2003) previously partitioned interannual variation

in NEE into environmental driver and biotic response

effects using a stepwise, multiple regression model. To

assess year-to-year differences in the biotic response to

environmental forcing, the linear response to the driv-

ing environmental variables was allowed to vary by

year. A sum-of-squares approach was then used to

partition the overall variance to four factors, which

Hui et al. (2003) referred to as functional change, inter-

annual climatic variability, seasonal climatic variation,

and random error.

In the present study, we begin by developing a

parsimonious, physiologically based model to explain,

as a function of basic environmental data, 9 years (1996–

2004) of half-hourly, ecosystem-level carbon fluxes mea-

sured using the EC technique at the Howland (Maine,

USA) AmeriFlux site. Analysis of the 1996–2002 How-

land data set (Hollinger et al., 2004) indicated that the

site has been sequestering (mean � 1 SD)

174 � 46 g C m�2 yr�1; years with above-average C se-

questration were characterized by warmer than average

spring and fall temperatures, and adequate summer soil

moisture.

In our model, potential ecosystem respiration (repre-

senting the sum of autotrophic and heterotrophic re-

spiration) and potential gross photosynthesis are each

described by a single equation. Actual fluxes equal the

potential flux multiplied by a set of environmental

scalars that reduce the flux under suboptimal environ-

mental conditions. To account for interannual variation in

the biotic response to environmental forcing, four model

parameters (controlling the base rate and temperature

sensitivity of respiration, and the maximum rate and PPFD

sensitivity of photosynthesis) are fit at the annual time

step. Then, by running the model with 1 year’s environ-

mental driving data and another year’s parameter values,

we simulate the NEE effects of interannual variation in

both environmental drivers and the biotic response to

environmental forcing. We then use a sums-of-squares

approach to determine the relative importance of environ-

mental driver and biotic response effects in determining

interannual flux variability across a range of timescales,

from daily to annual flux integrals. The ‘variation in biotic

response’ we refer to is really just the residual variance (at

the annual time step) that is not explained by the model

with fixed parameters. Much of this presumably arises

from inadequacies in the model (oversimplification of

processes or pools) and our lack of potentially illuminating

data such as canopy nitrogen content. However, by eval-

uating simple models in this way we may be able to

determine, at least at the gross level (between photosynth-

esis and respiration), the source of this biotic variation.

Data and method

Study site

Nine complete years (1996–2004) of data from the main

tower at the Howland Forest AmeriFlux research site

(451120N, 681440W, 60 m a.s.l.), located about 35 miles

north of Bangor, ME, USA, were used for the present

analysis. This forested site is located within a transition

zone between the boreal forest (to the north) and north-

ern hardwood forest (to the south). Forest composition

is dominated by Picea rubens (41%) and Tsuga canadensis

(25%), with hardwood species (mainly Acer rubrum and

Betula papyrifera) together accounting for o10% of the

total basal area. Site characteristics, instrumentation,

and data collection and processing are described in

greater detail by Hollinger et al. (1999, 2004).

Only valid, measured (i.e. not gapfilled) data were

used to fit the model. Night-time (PPFD o5 mmol

m�2 s�1) observations were filtered with a friction velo-

city threshold of u*�0.25 m s�1 (Hollinger et al., 2004),

resulting in annual data coverage between 28% (1997,

2003) and 44% (1999). Daytime coverage was consider-

ably better, ranging from 55% (1996, 1997) to over 80%

(2001, 2004). The longest data gap was 19 days, in

August 1999. There were only 5 weeks in total (out of

470 weeks in the 9-year data record) with no valid

night-time observations, and only 3 weeks in total with

no valid daytime observations. Ninety-five percent of
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all weeks had at least 10% night-time coverage, and 98%

of all weeks had at least 10% daytime coverage.

Model details

Our objective was to simulate a complete time series of

CO2 fluxes using a parsimonious model that required as

inputs only a minimal set of environmental data: solar

PPFD (Q), soil temperature (Tsoil), air temperature (Tair),

saturation vapor pressure deficit (VPD), and soil water

content (SWC).

The measured net flux of CO2, FCO2

mmol CO2 m�2 s�1), was modeled as the sum of gross

photosynthesis (Pgross, a negative flux) and ecosystem

respiration (Reco, a positive flux)

FCO2 ¼ Pgross þ Reco ð1Þ

For each of these component fluxes, the actual flux (Reco,

Pgross) was calculated as a potential flux ( _Reco, _Pgross)

multiplied by a set of scalar functions, f[x], that reduce

the flux under suboptimal environmental conditions

(described below, see also Table 1). This approach is

similar to that employed previously in other modeling

efforts (e.g. PnET; Aber & Federer, 1992; Aber et al.,

1996). These scalar functions were specified as sigmoi-

dal functions [Eqn (2)] that are well behaved in that f[x]

is constrained to the interval [0,1]. Parameters for the

scalar functions were fit globally to all years of data,

because the environmental variability in individual

years was often insufficient to adequately constrain

the parameterization:

f ½x� ¼ 1

1þ ey1�y2x
: ð2Þ

Night-time data were used to fit the Lloyd & Taylor

(1994) respiration model [Eqn (3)], which was specified

as a function of Tsoil ( 1C) because soil respiration

accounts for �60% of ecosystem respiration at How-

land (Davidson et al., 2006).

_Reco ¼ Rref � exp
E0

Tsoil þ 273:15� T0

� �
ð3Þ

Here, the parameter Rref is a scaling coefficient, the

parameter E0 is similar to an activation energy, and the

parameter T0 determines the temperature minimum at

which predicted respiration equals zero. Rref has flux

units mmol CO2 m�2 s�1) whereas both E0 and T0 are in

Kelvin. In a previous study (Richardson & Hollinger,

2005), we found that these three model parameters were

so highly correlated with each other that the model was

essentially overparameterized and at least one para-

meter was redundant. We, therefore, elected to fix the

value of E0 at a constant value (�68.3, which was the

best-fit value when a single set of parameters was fit to

all 9 years of data), but note that we could just as easily

have fixed the T0 parameter without substantially af-

fecting the analysis. Fixing E0 in this manner helps to

better constrain estimates of the Rref and T0 parameters,

reducing parameter uncertainties by roughly fivefold

(Richardson & Hollinger, 2005).

Soil drying can inhibit respiration (Carlyle & Ba Than,

1988; Savage & Davidson, 2001), and so the potential

ecosystem respiration given in Eqn (3) was multiplied

by a scalar function of soil water content [Eqn (2), Table

1], to yield the actual flux, as in Eqn (4)

Reco ¼ _Reco � f ½SWC�: ð4Þ

Equation (4) was used to estimate daytime Reco, and

Pgross was then estimated by Eqn (5)

Pgross ¼ FCO2
� Reco ð5Þ

Potential Pgross was modeled [Eqn (6)] as a function

of Q (mmol m�2 s�1 PPFD) using a simple Michaelis–

Menten light response model (e.g. Hollinger et al., 2004):

_Pgross ¼ Amax �
Q

Qþ Km

� �
: ð6Þ

Here, the parameter Km is the quantum flux

(mmol m�2 s�1 PPFD) at which half-saturation of the

light response curve occurs and Amax is the light-satu-

rated rate of gross canopy photosynthesis

(mmol CO2 m�2 s�1).

In this coniferous forest, the dates at which measur-

able carbon uptake begins in the spring and ends in the

autumn appear to be controlled mostly by soil tempera-

ture (Hollinger et al., 1999), and so f[Tsoil] was used as a

proxy for the phenology of carbon uptake (see also

Baldocchi et al., 2005). Photosynthesis is also sensitive
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Table 1 Environmental scalar parameters (y1, y2) for sigmoid

response functions, f ½x� ¼ 1=ð1þ ey1�y2xÞ, used to modify mod-

eled potential fluxes (Reco, ecosystem respiration; Pgross, gross

photosynthesis) under suboptimal environmental conditions

Flux y1 y2

Reco

f [SWC] 29.2 (1.9) 256 (16)

Pgross

f [SWC] 43.1 (2.3) 376 (19)

f [VPD] �1.980 (0.020) �0.7913 (0.0065)

f [Tair] 1.1274 (0.0053) 0.1573 (0.0007)

f [Tsoil] 1.4578 (0.0043) 0.7715 (0.0030)

Note: SWC, soil water content; VPD, vapor pressure deficit.

Standard errors on parameter estimates are given in parenth-

eses.
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to ambient Tair and is reduced by stomatal closure when

VPD is high or SWC is limiting (Aber & Federer, 1992;

Jones, 1992). Thus, the potential Pgross was modified by

four environmental scalars [Eqn (2)] to yield the actual

flux as in Eqn (7):

Pgross ¼ _Pgross � f ½Tsoil� � f ½Tair� � f ½VPD� � f½SWC�: ð7Þ

Parameter estimates for the environmental scalar

functions were well constrained by the data (Table 1),

and consistent with expectations based on previously

published studies and our knowledge of the site.

Model parameterization

We used maximum-likelihood techniques to fit the

model parameters; the resulting parameter estimates

are those that would be most likely to generate the

observed data, given the model and what is known

about the random flux measurement error (Press et al.,

1993). It is well documented that the flux measurement

error is better approximated by a double-exponential,

rather than Gaussian, distribution, and that the variance

of the measurement error is nonconstant (Richardson

et al., 2006a). Given that the measurement error has

these characteristics (which violate two key assump-

tions of ordinary least squares fitting; see Richardson &

Hollinger, 2005), maximum likelihood parameter esti-

mates are obtained by minimizing the mean absolute

weighted error [MAWE; Eqn (8)], rather than mean

squared error (MSE) (Press et al., 1993).

MAWE ¼ 1

N

XN

i¼1

yi � ypred

�� ��
sðdiÞ

ð8Þ

Here, the weighting factor, 1/s(di), is the reciprocal of

the estimated standard deviation of the random mea-

surement error associated with each half-hourly NEE

measurement. As noted by Raupach et al. (2005), 1/s(di)

provides us with a measure of our confidence in the

data: observations in which we have greater confidence

receive more weight in the cost function and hence exert

a greater influence during the optimization. Based on

results from a cross-site synthesis of flux measurement

uncertainty (Richardson et al., 2006a), we used Eqn (9a)

(growing season) and Eqn (9b) (dormant season) as the

basis for estimating s(di).

sðdiÞ ¼ 2:71þ 0:75� 10�3Q ðJD 122� 295Þ ð9aÞ

sðdiÞ ¼ 1:32þ 0:87� 10�3Q ðrest of yearÞ: ð9bÞ

Best-fit parameters were determined using an itera-

tive algorithm suitable for nonlinear curve fitting (Mar-

quardt method in PROC NLIN, SAS 9.1, SAS Institute,

Cary, NC, USA).

Estimation of model parameters required two steps.

In the first step, a single set of model parameters was fit

to all 9 years of data. There were 15 parameters fit in this

manner (Rref, T0, E0, Amax, and Km, plus the y1 and y2

parameters for each of the five environmental scalar

functions). In the second step, we fixed the environ-

mental scalar parameters (Table 1), as well as E0, to the

values determined in the first step, but allowed the

remaining parameters for _Reco (Rref, T0) and _Pgross (Amax,

Km) to vary among years, reflecting interannual varia-

tion in the biotic response to environmental forcing.

Once the best-fit parameter set (Rref, T0, Amax, and Km)

for each year was determined, Monte Carlo simulations

(n 5 500/yr�1) were used to obtain the joint probability

distributions of the parameter estimates, following the

procedures described by Press et al. (1993) and sum-

marized in Richardson & Hollinger (2005). These prob-

ability distributions give insight into parameter

uncertainties and covariances, and permit evaluation

of uncertainty in model predictions.

Crossed model runs and posterior analyses

Our objective was to assess the effects of interannual

variation in both environmental drivers themselves, as

well as the biotic response to environmental forcing (the

model parameters), on modeled NEE and its compo-

nent fluxes, Reco and Pgross. To do this, we ran our model

by crossing each ‘driver year’ (each of the 9 years of

environmental drivers) with each ‘parameter year’

(each of the 9 years of model parameter sets), resulting

in a 9� 9 matrix of model predictions. This ‘crossed

model’ was run 500 times, once for each of the Monte

Carlo simulations, effectively yielding a 9� 9 matrix

with 500 layers.

We used analysis of variance (ANOVA) to partition the

variance in crossed model predictions to different fac-

tors, with an emphasis on ‘driver year’ and ‘parameter

year’ effects. With large sample sizes, ANOVA is known

to be relatively robust to departures from non-normality

and heteroscedasticity, but we note that at the annual

time step, ANOVA residuals were homoscedastic and

approximately normal. ANOVA is, therefore, an appro-

priate tool for our objective, which is simply to partition

the variance in model predictions, rather than rigorous

hypothesis testing. Our approach was as follows: for

each ‘driver year’� ‘parameter year’� ‘model run’

combination, half-hourly model predictions were

summed, first by day of year, and subsequently at

longer periods of integration (week, month, season,
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year). At each of these periods of integration, the ANOVA

was conducted on the integrated sums (mean–adjusted)

of NEE, Reco, and Pgross. Analysis was conducted sepa-

rately by, for example, each week, but then the sums of

squares for each model factor were added across all

weeks, so that the proportion of the total variance

accounted for by each factor could be determined.

ANOVA factors were specified as follows: ‘driver year,’

‘parameter year,’ ‘driver year’� ‘parameter year’ inter-

action, and ‘parameter year’� ‘model run’ interaction.

The final term is important because it captures the

variance that can be attributed to uncertainty in model

parameterization, which results from the fact that the

original data are measured with some imprecision

[measurement error d, Eqn (9a and 9b)]. Remaining

unexplained variance, which was negligible (� 0.05%

of the total variance) was accounted for by the ANOVA

model error term.

PnET modeling

We also used a process-based canopy physiology model

(PnET-DAY; Aber et al., 1996) to determine the range of

foliar nitrogen concentrations required to capture the

modeled interannual variation in Pgross. PnET-DAY

simulates carbon assimilation for a multilayered forest

canopy at a daily time step using standard climatic

inputs (temperature, precipitation and PPFD), along

with vegetation parameters for canopy light attenua-

tion, phenology, photosynthetic capacity, leaf mass, and

turnover rate, and response to temperature, PPFD, and

VPD (see Aber et al., 1996, for full discussion of model

parameters). Our analysis focuses on the effects of

variation in foliar N because in the PnET model, max-

imum photosynthetic capacity scales directly with foliar

N, and thus the variation in N required for PnET

predictions to align with model predictions may be

relevant for understanding interannual variation in

the Amax parameter in Eqn (6).

Results

Interannual environmental variation

At both the annual and monthly time steps, there were

measurable anomalies in surface-atmosphere exchange

(gap-filled tower NEE) and three key environmental

factors (air temperature, solar radiation, and precipita-

tion) over the 9-year period of study (Fig. 1). Pro-

nounced deviations in annual NEE were seen in 1998

(1 SD above normal, i.e. less uptake), as well as 2000 and

2004 (both 1 SD below normal, i.e. more uptake). Air

temperatures were 1 SD warmer than the 9-year average

in 1998, 1999, and 2001, but 1 SD cooler in 2000, 2003,

and 2004. Solar radiation in 2001 was almost 2 SD above

the average. Precipitation was more than 1.5 SD above

the average in 1996, but close to 2 SD below the average

in 2001.

At the monthly time step, patterns were sometimes

different from those at the annual time step (Fig. 1). For

example, air temperatures in March 2000, were almost 2

SD above the 9-year average, but from April through

September of that year, temperatures were well below

average. In 2002, air temperatures were above average

during the winter, below average during the spring,

above average during the summer, and below average

during the autumn; on the whole, the mean annual air

temperature was approximately equal to the 9-year

average. In 2003, precipitation through July was gen-

erally below average, but from August onwards, pre-

cipitation was above average.

Model fit, annual sums, and diagnostics

With a separate set of _Reco and _Pgross model parameters

fit to each calendar year of measured flux data, the fitted

model explains about 50% of the half-hourly night-time

FCO2
variance, and 65% of the daytime variance (Table

2). The root mean squared error (RMSE) is about 65%

larger during the day than at night, whereas the mean

absolute error (MAE) is twice as large during the day

than at night.

At the annual time step, the correlation between

tower (gap-filled) NEE and fitted model NEE is strong

(r 5 0.88, Po0.01), although the fitted model tends to

predict more NEE than indicated by gap-filled tower

measurements (difference of 84 � 25 g C m�2 y�1,

mean � 1 SD; see Table 3). Differences between model

and tower are negligible during the day

(16 � 14 g C m�2 yr�1 more uptake predicted by model)

but substantial during the night (68 � 14 g C m�2 yr�1

less release predicted by model) (Table 3). The nocturnal

difference can be largely attributed to the fact that the

present model is fit using maximum-likelihood ap-

proach, whereas gap-filling has previously been con-

ducted using a least-squares approach. In an earlier

study (Richardson & Hollinger, 2005), we found that

maximum-likelihood fitting of respiration models

tended to result in about a 10% reduction in estimated

Reco compared with models fit by least squares.

Aggregated to the weekly time step, mean model

residuals exhibit some seasonal patterns that indicate

model predictions are biased at certain times of the year.

Except during the winter, there is a tendency for the

mean night-time error to be 40, with the most pro-

nounced bias extending from day 90 to 270, and peak-

ing around days 180 and 240 (Fig. 2a). Mean daytime

error is o0 from day 90 to 120, and from day 180 to 260,
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but 40 from day 120 to 180 and from day 270 to 300

(Fig. 2b). These biases could be due to factors or process

details not included in the model (e.g. separation of

above- and below-ground controls on respiration) or

mis-specification of the functional form of one or more

components of the model.

Spectral analyses based on wavelet transformations

complement traditional analyses of data-model agree-

ment (Katul et al., 2001; Braswell et al., 2005; see also

Siqueira et al., 2006), and indicate (Fig. 3) that there is

good agreement between model predictions and tower

measurements (not gap filled) across a wide range of

time scales, from hours to years. Wavelet variance is

highest at the strongly forced diurnal and seasonal time

scales. Compared with tower measurements, the fitted

model somewhat under-estimates the high-frequency

variance, which is largely due to measurement uncer-

tainty (flux measurement errors and footprint variation)

at the half-hourly time step. However, the variance at

longer time scales is captured by the fitted model, as

well as (or, for time scales 41 month, better than) by the

Howland gap-filling routine. For the analysis per-

formed here, it is especially important that the fitted

model adequately capture this low-frequency variance.

Model predictions and Monte Carlo simulations

The fitted model predicts the smallest NEE in 2002

(234 g C m�2 yr�1) and the largest in 2000 (320 g C

m�2 yr�1). Reco and Pgross are both smallest in 1996,

but Reco is largest in 1999, whereas Pgross is largest in

2000 (Table 3). Monte Carlo simulations indicate that

95% confidence intervals on the total modeled annual

NEE, Reco and Pgross are � 19–23, � 28–36, and � 17–

22 g C m�2 yr�1, respectively. These confidence intervals

are based solely on the random measurement uncer-

tainty, both as it affects the individual measurements,

and as it is propagated out through the model

parameterization and predictions (e.g. Richardson &

Hollinger, 2005), and does not include the additional

uncertainty associated with fixed biases (e.g. choice of

u* threshold). Because the 95% confidence intervals on
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Fig. 1 Monthly (narrow bars, dark shading) and annual (wider bars, lighter shading) anomalies in gap-filled CO2 fluxes (net ecosystem

exchange, NEE), air temperature (Tair), solar PPFD (Q), and precipitation (PPT), based on a 9-year record from the Howland Forest

AmeriFlux site in central Maine, USA. The y-axis of all four panels is in terms of standard deviations from the mean. Note that a positive

NEE anomaly means less negative uptake.
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the highest and lowest annual sums are clearly non-

overlapping, we can conclude that there is significant

interannual variation in forest-atmosphere CO2 ex-

change (Table 3), as expected. Interestingly, the

interannual variation in NEE predicted by the fitted

model (1 SD 5 � 32 g C m�2 yr�1; CV 5 11%) is

substantial, but is considerably less than the interannual

variation in either modeled Reco (1 SD 5 � 77 g

C m�2 yr�1; CV 5 8%) or Pgross (1 SD 5 � 89 g C m�2

yr�1; CV 5 7%).

The Monte Carlo simulations confirm that some of

the interannual variation in CO2 exchange can be

attributed to interannual variation in the biotic response

to environmental forcing, as the parameter clouds for

each year are generally distinct (nonoverlapping) from

each other for both the of _Reco and _Pgross model compo-

nents (Fig. 4). For _Reco (Fig. 4a), the best-fit Rref para-

meter ranges from 54.7 (2004) to 65.2 (2001)

mmol m�2 s�1, whereas T0 ranges from 257.86 (1998) to

260.23 (1996) K; 95% confidence intervals on these
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Table 2 Model error (ei 5 yi–ymodel) statistics for simple physiologically based model of forest-atmosphere CO2 exchange fit to 9

years of data from the Howland AmeriFlux site

Year

Night-time Daytime

Obs. R2 RMSE MAE MAWE Obs. R2 RMSE MAE MAWE

1996 2499 0.49 2.23 1.20 0.59 4910 0.63 3.64 2.33 0.84

1997 2406 0.50 2.24 1.08 0.51 4993 0.65 3.57 2.27 0.81

1998 3051 0.46 2.47 1.24 0.60 6383 0.63 3.85 2.43 0.89

1999 3755 0.45 2.23 1.16 0.59 7035 0.62 3.73 2.32 0.88

2000 3214 0.51 2.13 1.11 0.58 6914 0.65 3.95 2.46 0.92

2001 3301 0.48 2.69 1.40 0.68 7374 0.65 3.79 2.38 0.87

2002 3214 0.55 2.06 1.14 0.54 6544 0.68 3.53 2.26 0.82

2003 2405 0.54 1.91 1.02 0.51 6523 0.70 3.53 2.28 0.83

2004 3149 0.51 1.89 1.00 0.51 7277 0.72 3.26 2.13 0.77

Note: Separate model parameter sets fit to each calendar year of data (see text for details). Night-time periods are defined as PPFD

o5 mmol m�2 s�1. Obs. refers to the number of valid measurements used for fitting. RMSE is the root mean squared error. MAE is the

mean absolute error. MAWE is the mean absolute weighted error, ð1=NÞ
PN

i¼1 ½jeij=sðdiÞ�, where the weighting factor, 1/s(di), is the

estimated standard deviation of the measurement error (see Richardson & Hollinger, 2005, for more details). The maximum-

likelihood paradigm used for model fitting minimizes MAWE.

Table 3 Model predictions (g C m�2 y�1), aggregated to the annual time step, of a physiologically based model of forest-

atmosphere CO2 exchange, fit to data from the Howland AmeriFlux site

Year Tower NEE

Modeled Tower Modeled

PnET GCENEE Reco Pgross Night Day Night Day

1996 �158 �244 � 11bc 878 � 18a �1119 � 11a 441 �598 367 �611 �1126

1997 �153 �252 � 11bc 924 � 17a �1174 � 11b 471 �624 387 �639 �1187

1998 �131 �253 � 10bc 1063 � 16c �1316 � 10d 541 �672 458 �711 �1207

1999 �178 �254 � 10bc 1078 � 16c �1334 � 9d 523 �701 465 �719 �1260

2000 �271 �321 � 10a 1057 � 17c �1378 � 10e 503 �774 447 �768 �1127

2001 �175 �295 � 9a 1071 � 14c �1367 � 9e 540 �716 451 �746 �1216

2002 �154 �235 � 10c 1002 � 15bc �1237 � 9c 481 �636 425 �659 �1106

2003 �221 �282 � 10ab 945 � 17ab �1227 � 10c 452 �673 400 �683 �1112

2004 �254 �318 � 9a 927 � 15a �1246 � 9c 451 �705 387 �706 �1129

Tower NEE column reports gap-filled eddy covariance measurements of net ecosystem exchange (NEE). The modeling approach,

and the procedure for separating NEE into its component fluxes (Reco, ecosystem respiration; Pgross, gross photosynthesis), is

described in the text. Modeled NEE, Reco and Pgross annual sums are reported as � 1 SD, as determined by Monte Carlo simulation;

in these three columns, values followed by the same letter indicate years for which 95% confidence intervals on the annual sum are

overlapping. Night refers to periods with PPFD o5 mmol m�2 s�1. PnET GCE is gross carbon exchange predicted by the PnET model

with a fixed canopy N concentration of 1.05%.
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parameter estimates are � 3.0–5.5 mmol m�2 s�1 and

� 0.42–0.59 K, respectively. In all years, Rref and T0

are strongly correlated with each other (r � 0.85). As a

consequence of these parameter differences, the range

of predicted rates of _Reco becomes progressively larger

as Tsoil increases. For example, at Tsoil 5 20 1C, which is

about the maximum observed at Howland, predic-

ted _Reco with the year 2000 parameters is

8.8mmol CO2 m�2 s�1, compared with 7.5mmol CO2 m�2

s�1 for the 1996 model parameters; this is a difference of

roughly 18% (Fig. 4b).

For _Pgross (Fig. 4c), the best-fit Km parameter ranges

from 368 (2000) to 571 (1997) mmol m�2 s�1 PPFD,

whereas Amax ranges from �36.15 (1996) to �40.24

(2001) mmol CO2 m�2 s�1; 95% confidence intervals on

these parameter estimates are � 21–49 mmol m�2 s�1

PPFD and � 0.74–1.26mmol CO2 m�2 s�1, respectively.

In all years, Km and Amax are strongly correlated with

each other (r � �0.80). At Q 5 2000mmol m�2 s�1 PPFD,

predicted _Pgross for the year 2000 parameters is

�31.8 mmol CO2 m�2 s�1, compared with �28.1 mmol

CO2 m�2 s�1 for the year 1996 parameters; this is a

difference of about 13% (Fig. 4d). It is important to

remember that _Pgross reflects a maximum potential rate

of gross uptake under ideal environmental conditions;

when the various environmental scalars are taken into

account (Eqn (2), Table 1), the maximum Pgross pre-

dicted by the fitted model ranges from

�21.2 g C m�2 yr�1 (1996) to �23.8 g C m�2 y�1 (2001).

Partitioning the variance in modeled fluxes

By crossing each ‘driver year’ with each ‘parameter

year,’ we generated environmental drivers� biotic re-

sponse scenarios for forest NEE that vary at the annual

time step by over 100 g C m�2 yr�1 in their predictions.

For example, with year 2004 model parameters, NEE

ranges between �227 g C m�2 yr�1 (1997 environmental

drivers) and �337 g C m�2 yr�1 (2001 environmental

drivers) (Fig. 5a). Similarly, with year 2004 environmen-

tal drivers, NEE ranges between �247 g C m�2 yr�1

(1999 model parameters) and �352 g C m�2 yr�1 (2000

model parameters) (Fig. 5b).

Analysis of variance conducted on the 9� 9 matrix of

crossed model predictions aggregated to different time-

scales indicates that as the period of integration is

lengthened, the percentage of total variance accounted

for by variation in environmental drivers is reduced,

and the percentage of total variance accounted for by

variation in model parameters (i.e. the biotic response to

environmental forcing) is increased (Fig. 6). One inter-

pretation of this result is that although the weather can

be highly variable over days and weeks, this variability

tends to even out across months and seasons. With this

averaging, the interannual variation in model para-

meters becomes progressively more important. Thus,

environmental variation is directly responsible for

short- but not long-term variation in CO2 exchange.

Our analysis suggests that NEE is most sensitive to

variation in environmental drivers (and least sensitive
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�ei ¼ ð1=NÞ
P
ðyi � ymodelÞ, calculated by week) for a physiologi-

cally based model fit to 9 years of CO2 flux data from the

Howland Forest AmeriFlux site, during (a) night-time, defined

as PPFD o5 mmol m�2 s�1, and (b) daytime periods. Colors

denote different years of data; the smoothed line (black) is based

on all 9 years of data.
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Fig. 3 Spectral analysis, based on wavelet transformation, of

tower measurements (nongap-filled, black line), gap-filled (hol-

low circles), and modeled (filled circles) time series of CO2 fluxes

from the Howland Forest AmeriFlux site. At time scales from

hours to years, the agreement between the modeled fluxes and

measured fluxes is as good, if not better than, the agreement

between gap-filled and measured fluxes.
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to variation in the model parameters), whereas Reco is

least sensitive to variation in environmental drivers

(and most sensitive to variation in the model para-

meters). Even at the shortest timescale, variation in

environmental drivers accounts for only 60% of the

total variation in modeled Reco, whereas the figure is

495% for both NEE and Pgross (Fig. 6). This is probably

because there tends to be less day-to-day variation in

soil temperature compared with either air temperature

or PPFD, and so the modeled Reco tends to be relatively

stable over time for any given parameter set. In com-

parison, modeled Pgross varies dramatically depending

on whether it is a sunny or cloudy day. The ‘driver

year’� ‘parameter year’ interaction, ‘parameter

year’� ‘model iteration’ interaction, and ANOVA model

error term together account for o7% of the total varia-

tion in NEE, regardless of the period of integration.

Based on ANOVA of the crossed model annual sums for

Reco, Pgross, and NEE, we determined the magnitude of

the ‘driver year’ and ‘parameter year’ effects for each

year (Fig. 7). The sign convention is that a positive effect

for Reco means increased respiratory losses (more posi-

tive Reco), whereas a negative effect for Pgross indicates

increased canopy uptake (more negative Pgross). Rela-

tive to the average crossed model prediction, parameter

year effects for Reco (Fig. 7a) range from

�100 g C m�2 yr�1 (1996) to 1 94 g C m�2 yr�1 (2000).

Thus, for a climatically ‘typical’ year, ecosystem respira-

tion could vary by close to 200 g C m�2 yr�1 depending

on whether the forest is functioning as it had in 1996 or

2000. Driver year effects for Reco are much smaller,

� 40 g C m�2 y�1 or less, reflecting the result that at

the annual time step, Reco is more influenced by varia-

tion in model parameters (83%) than the direct effect of

variation in environmental drivers (12%) (Fig. 6).

For crossed model annual Pgross (Fig. 7b), parameter

year effects range from �151 g C m�2 yr�1 (2000) to

1 123 g C m�2 yr�1 (1996), and are more or less compar-

able in magnitude to those for Reco. By comparison,

Pgross driver year effects range from �74 C m�2 yr�1

(2001) to 1 67 g C m�2 yr�1 (1999) and are roughly

50% larger than those for Reco, reflecting the greater

sensitivity of Pgross to variation in environmental dri-

vers (Fig. 6). Parameter year effects for Pgross are nega-

tively correlated with those for Reco (r 5�0.85,

P � 0.01). Similarly, driver year effects for Pgross are
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Fig. 4 Model parameters (a, c) and model predictions (b, d) for potential ecosystem respiration ( _Reco; (a, b) and gross photosynthesis

( _Pgross; (c, d), based on 9 years of CO2 fluxes measured at the Howland AmeriFlux site. Fluxes are ‘potential’ in that they represent

expected fluxes under optimal environmental conditions; environmental scalars (Table 1) reduce potential to actual fluxes under

suboptimal conditions. Separate model parameters were fit for each calendar year; clouds of data points illustrate parameter uncertainty,

as determined by Monte Carlo simulation (n 5 500/yr�1).
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negatively correlated with those for Reco (r 5�0.78,

P 5 0.01). These correlations obviously contribute to

the very strong negative correlation between modeled

Pgross and Reco (r 5�0.93, Po0.001).

Compared with either Pgross or Reco variation in

environmental drivers (40%) and variation in model

parameters (55%) contribute more evenly to the total

variation in modeled NEE (Figs 6 and 7c). The magni-

tudes of the driver year and parameter year effects for

annual NEE indicate that this flux is less sensitive

(smaller effect sums-of-squares) to variation in environ-

mental drivers than Pgross, more sensitive to variation in

environmental drivers than Reco, and less sensitive to

variation in model parameters than either of the com-

ponent fluxes. Related to this (as noted above), the

interannual variation in NEE is less than half that of

either Reco or Pgross. Driver year effects for annual Pgross

(but not Reco) and NEE are positively correlated

(r 5 0.87, P � 0.01), indicating that a climate-driven

increase in Pgross is also associated with a climate-driven

increase in NEE. There is a weak negative correlation

(r 5�0.59, P 5 0.10) between driver year and parameter

year effects for NEE, suggesting that interannual varia-

tion in the biotic response to environmental forcing

tends to offset interannual variation in the environmen-

tal drivers.

PnET analysis

The PnET-DAY ecosystem model (Aber et al., 1996), run

for Howland with a fixed foliar N concentration of

1.05%, predicts mean annual gross carbon exchange

(GCE, 1163 � 55 g C m�2 yr�1) that is in reasonable

agreement with the 9-year mean Pgross of the fitted

model (1266 � 88 g C m�2 yr�1) (Table 3). Note that the

reported standard deviations indicate that the PnET

model predicts roughly 40% less interannual variation

than the fitted model. The linear correlation between

PnET and fitted model annual sums is weak (r 5 0.45,

P 5 0.22), reflecting the fact that the difference between

PnET and fitted model predictions is highly variable at

the annual time step (mean difference of

103 � 80 g C m�2 yr�1).

PnET predicts that an increase of 0.01% in foliar N,

from 1.05% to 1.06%, is associated with an increase in

annual GCE of �9 g C m�2 yr�1. Thus, by varying foliar

N at the annual time step, from a low of 1.04% in 1996 to

a high of 1.34% in 2000, the interannual variation in

Pgross can be replicated by the PnET model. The re-

quired foliar N concentrations are weakly correlated

(r 5�0.62, P 5 0.07) with the predicted potential Pgross at

Q 5 2000mmol m�2 s�1. Because foliar N at Howland

has been measured only sporadically, we cannot con-

clude that variation in foliar N was the principal source

of interannual variation in gross photosynthesis. We
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note that the range of required foliar N values is

consistent with that which has been documented

(across sites) for the dominant conifer species at How-

land (e.g. Pardo et al., 2005), and foliar N of red pine has

been seen to vary (across years) between 0.98% and

1.29% at the Harvard Forest (Magill et al., 2004). How-

ever, the required 30% variation in foliar N at Howland

would seem to be unlikely given the multiyear lifespan

of the dominant conifers, red spruce, and hemlock.

Therefore, while interannual variation in foliar N may

contribute to the interannual variation in Pgross, there

are presumably additional factors involved.

Discussion

Limitations of the model

The simple model used in the present study is far from

perfect. Parameterized as it is (for a particular site and

particular year) we cannot expect it to perform well at

other sites, or if run into the future. A more complex

model might perform better in these more generalized

applications, although recent work suggests that mod-

eling interannual variation in forest ecosystem C ex-

change remains a major challenge (Hanson et al., 2004,

Siqueira et al., 2006).

Obvious deficiencies of our model include the fact

that model parameters are fixed across the calendar

year, despite the fact that both key ecosystem state

variables (e.g. leaf area index for Pgross) and physiolo-

gical attributes (e.g. leaf-level Amax) can vary seasonally

(Hollinger et al., 2004; Gove & Hollinger, 2005). Model

predictions show some seasonal biases (Fig. 2). Because

the data are arbitrarily broken into calendar years, there

is a discontinuity in model parameters at the December

31–January 1 boundary. For Pgross, the model treats the

canopy as a ‘big leaf,’ rather than a multilayered cano-

py, and does not consider how variation in the ratio of

direct : diffuse solar radiation may influence photosyn-

thetic light use efficiency (e.g. Hollinger et al., 1994).

The model does not explicitly incorporate phenology

(Richardson et al., 2006b) or stomatal control (Mäkelä

et al., 1996) components; instead, the environmental

scalars for Tsoil and VPD effectively assume these roles.

For Reco, we do not distinguish between aboveground,

root respiration, and heterotrophic soil respiration,

although the contribution of these to Reco may vary

seasonally. Soil temperature is assumed to represent the

thermal state of the ecosystem as a whole, despite the

fact that aboveground components account for � 40%

of Reco (Davidson et al., 2006). The model has only a

single soil carbon pool, which is fixed in size (essentially

the Rref parameter) across the entire year. We do not

account for seasonally varying litter inputs or ‘hidden’

ecosystem C pools (Hanson et al., 2003) such as

carbohydrate reserves or the forest floor, and feedbacks

between respiration and production are similarly

ignored.
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These caveats aside, it is clear that the model does a

reasonable job reproducing the measured fluxes across

a range of time scales (Table 2, Figs 2 and 3), and it is

only through a modeling approach that it is possible to

partition the interannual variation into environmental

driver and biotic response effects (Fig. 5). Because of

equifinality issues (Hollinger & Richardson, 2005), there

are strong arguments to be made for keeping models as

simple as possible, which is why we chose the model

structure used here, with 11 parameters fit globally to

all years of data, and just four parameters varying

among years.

Direct and indirect effects of climate

Results of the present study confirm the hypothesis that

interannual variation in forest-atmosphere CO2 fluxes

can be attributed both to variation in environmental

drivers and variation in the biotic response to environ-

mental forcing (Fig. 5). Furthermore, it appears that the

strength of these two effects depends on the period of

integration (variation in the biotic response becomes

progressively more important as the period of integra-

tion is lengthened), and varies among Reco, Pgross, and

NEE (Fig. 6). One way to interpret this result is that over

the short term, the ecosystem characteristics repre-

sented by the model parameters in Pgross and Reco are

essentially fixed. However, these processes (and hence

parameters) tend to vary over longer time periods (e.g.

Gove & Hollinger, 2005). A consequence of this is that in

the short-term (hours and days), CO2 fluxes can be

reasonably well characterized using a fixed set of model

parameters, as most of the total variance is attributable

to variation in key environmental drivers (a sunny day

vs. a cloudy day). However, at longer time scales, our

ability to accurately model CO2 fluxes is clearly con-

strained by our understanding of how (and why) the

biotic response to environmental forcing (i.e. the model

parameters) might vary over time.

Numerous connections between environmental or

climatic conditions and interannual variation in NEE

have been previously observed. Solar radiation and

temperature effectively drive photosynthesis and re-

spiration; these processes are modulated by secondary

factors, such as soil moisture. Other studies have noted

the importance of weather anomalies at certain key

points in the growing season (Goulden et al., 1996a,

1998; Barr et al., 2002), and we have seen such effects at

Howland (Hollinger et al., 2004). There is a strong

connection between early spring temperatures and the

date of leaf emergence; an earlier spring flush can

lengthen the growing season and increase the annual

carbon sequestration (Goulden et al., 1996a; Chen et al.,

1999; Hollinger et al., 1999; Aubinet et al., 2002; Carrara

et al., 2003). In the subboreal evergreen forest at How-

land, warm April temperatures are associated with

enhanced CO2 uptake (Hollinger et al., 2004). However,

at other sites, the effect of warm springtime tempera-

tures on NEE may be uncertain, because stimulation of

soil respiration can offset or possibly negate the increase

in photosynthetic uptake (Chen et al., 1999; Barr et al.,

2002; Carrara et al., 2003). Interannual variation in

precipitation is critical in some ecosystems, especially

when the amount of leaf area produced is controlled by

moisture availability (Flanagan et al., 2002; Schwarz

et al., 2004), and El Niño-La Niña cycle differences in

precipitation and temperature have been linked to

differences in annual NEE (Goldstein et al., 2000; Griffis

et al., 2003; Morgenstern et al., 2004).

Braswell et al. (1997) suggested that the lagged (and

thus indirect) effects of climatic anomalies on CO2

fluxes may be more important than (and even opposite

in sign to) the initial direct effects (see also Barford et al.,

2001). Indirect effects of climate on ecosystem processes

may operate at different time scales: physiological ac-

climation is presumably a relatively rapid process (days

to weeks), whereas biogeochemical effects (e.g. altered

N cycling rates) may occur over months or years. These

indirect effects can be difficult to observe (or establish a

cause–effect relationship), except in dramatic instances.

For example, really extreme events, such as heat waves,

may cause step changes in ecosystem physiology that

have long-lasting effects on CO2 fluxes (Goldstein et al.,

2000). Although we have shown here how interannual

differences in the biotic response to environmental

forcing can be quantified (e.g. Figs 4, 6 and 7), explain-

ing the underlying cause of these differences is more

problematic and requires a more comprehensive model

and additional data. Neither the model parameters

themselves, nor aggregate ‘parameter year’ effects, cor-

related strongly with current or lagged (either annual or

monthly) weather anomalies, precluding a direct attri-

bution of the biotic response to a direct or indirect effect

of climatic variation. It is probable that these connec-

tions are complex, likely nonlinear, and certainly not

unique (i.e. more than one type of climate anomaly

could trigger changes in Amax). For this type of analysis

to be successful, it would probably be necessary to fit

model parameters at a finer temporal resolution (per-

haps using state-dependent parameter models), be-

cause direct and indirect (lagged) effects of climatic

anomalies are likely to be obscured in the course of

annual aggregation.

PnET modeling indicated that variation in foliar N is

a possible, if somewhat unlikely, explanation for the

observed interannual variation in Pgross. Unfortunately,

we do not have field data to validate this hypothesis.

We suggest that along with continued tower-based CO2
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flux measurements, regular measurement of some key

biotic factors could contribute to a deeper understand-

ing of the underlying causes of interannual variation in

Reco and Pgross, and hence NEE. These include changes

in soil C pools (especially litter inputs), N cycling rates,

foliar N, maximum leaf area index, soil respiration, leaf-

level gas exchange, and canopy phenology.

Pgross or Reco as the source of variation in NEE?

The interannual variation in Reco, Pgross or NEE at a

given site is considerably smaller than that which has

been observed across sites and biomes (Valentini et al.,

2000; Baldocchi et al., 2001; Law et al., 2002). Under none

of the different crossed model scenarios, for example,

was it possible for the Howland site to turn from a

carbon sink into a source. However, analysis presented

here suggests that both Pgross and Reco show comparable

ranges of interannual variation, and the variation in

these component fluxes is considerably larger than the

variation in NEE (Savage & Davidson, 2001; but cf.

Raich et al., 2002). This contrasts with what has pre-

viously been reported in other systems. For example,

Goulden et al. (1998) found that gross production was

relatively stable across years, whereas it was the inter-

annual variation in Reco that effectively determined

whether the forest was a carbon source or sink.

Morgenstern et al. (2004) reached a similar conclusion

studying a seasonally dry temperate rain forest.

Although Barr et al. (2002) suggested that a corollary

of the results of Valentini et al. (2000) is that climate

effects on NEE occur via Reco rather than Pgross, their

data indicate the exact opposite: in a deciduous boreal

forest and a deciduous temperate forest, Pgross was

found to be more sensitive than Reco to interannual

climatic variation. Thus, Barr et al. (2002) concluded

that variation in Pgross largely controls the interannual

variation in NEE (see also Griffis et al., 2003).

Our fitted model results suggest an interesting nega-

tive correlation between annual Pgross and Reco

(r 5�0.93, Po0.001). This correlation may be a spurious

artifact of the way in which Pgross is calculated (i.e.

as FCO2
� Reco, Eqn (5)). Alternatively, it may represent

a genuine physiological relationship. For example,

Janssens et al. (2001) demonstrated that cross-site differ-

ences in soil respiration are better explained by differ-

ences in productivity than differences in annual

temperature. Two mechanisms would explain this pat-

tern. First, root respiration is probably constrained by

the amount of photosynthate allocated to roots, which

will depend on productivity. Second, heterotrophic

respiration is probably constrained by the availability

of readily decomposed substrate (e.g. recently senesced

leaves and fine roots), the abundance of which is also

directly linked to productivity (Janssens et al., 2001).

The opposite is also possible, namely that variation in

Reco may lead to a subsequent variation in photosynth-

esis. For example, interannual variation in N minerali-

zation rates could drive variation in foliar N content

and hence photosynthetic capacity at the canopy level

(Aber & Federer, 1992; Aber et al., 1996). Regardless of

the cause of the correlation, it promotes homeostasis of

NEE: offsetting variation in Reco and Pgross results in less

interannual variation in NEE than is seen for either Reco

or Pgross alone. In this regard, Howland results differ

sharply from those described above, where either Reco

(Goulden et al., 1998; Morgenstern et al., 2004) or Pgross

(Barr et al., 2002) was found to control the interannual

variation in NEE.

Conclusion

Interannual variation in ecosystem metabolism is

known to contribute to variation in the annual growth

rate of atmospheric CO2 (Houghton, 2000). Results from

our modeling analysis suggest that interannual varia-

tion in NEE at the spruce-dominated Howland Forest

can be attributed not only to the direct effect of variation

in environmental drivers, but also to variation in the

biotic response (basal/maximum rates and driver sen-

sitivities) of Reco and Pgross to the environmental forcing.

For both of these component fluxes, the direct effect of

variation in environmental drivers accounts for less

than one-third of the variance in the modeled fluxes at

the annual time step; for NEE, the figure is still only

40% (Fig. 6). Related to this, Hui et al. (2003) used an

approach based on weekly means of daily values to

partition the overall variation in pine forest NEE and

Reco to four factors (interannual functional change,

interannual climatic variability, seasonal climatic varia-

tion and random error). In that study, ‘functional

change’ was found to account for �10% of the ob-

served variation. The conclusion from both Hui et al.

(2003) and the present study is that prognostic models

that fail to take the interannual variation in ecosystem

function into account will have little chance of accu-

rately predicting CO2 fluxes at time scales of seasons to

years. Better predictions of future atmospheric CO2

levels will require improved understanding of the un-

derlying causes of interannual variation in the biotic

response to environmental forcing.
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