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[1] We explored the potential application of two remotely sensed (RS) variables, the
Global Vegetation Moisture Index (GVMI) and the near-infrared albedo (AlbedoNIR), in
modeling the gross primary production (GPP) of three deciduous forests. For the Harvard
Forest (deciduous) of Massachusetts, it was found that GPP is strongly correlated
with GVMI (coefficient of determination, R2 = 0.60) during the growing season, and with
AlbedoNIR (R2 = 0.82) throughout the year. Subsequently, a statistical model called
the Remotely Sensed GPP (R-GPP) model was developed to estimate GPP using remotely
sensed radiation (land surface temperature (LST), AlbedoNIR) and ecosystem variables
(enhanced vegetation index (EVI) and GVMI). The R-GPP model, calibrated and
validated against the GPP estimates derived from the eddy covariance flux tower of the
Harvard Forest, could explain 95% and 92% of the observed GPP variability for the study
site during the calibration (2000–2003) and the validation (2004–2005) periods,
respectively. It outperformed the primary RS-based GPP algorithm of Moderate
Resolution Imaging Spectroradiometer (MODIS), which explained 80% and 77% of the
GPP variability during 2000–2003 and 2004–2005, respectively. The calibrated R-GPP
model also explained 93% and 94% of the observed GPP variation for two other
independent validation sites, the Morgan Monroe State Forest and the University of
Michigan Biological Station, respectively, which demonstrates its transferability
to other deciduous ecoregions of northeastern United States.

Citation: Jahan, N., and T. Y. Gan (2009), Modeling gross primary production of deciduous forest using remotely sensed radiation

and ecosystem variables, J. Geophys. Res., 114, G04026, doi:10.1029/2008JG000919.

1. Introduction

[2] The gross primary production (GPP) of an ecosystem
represents the gross uptake of carbon dioxide (CO2) by
vegetation for photosynthesis. It is the primary conduit of
carbon flux from atmosphere to land and a key source of
energy that fuels economies. On the other hand, CO2 from
fossil fuel burning and ecosystem respiration is a major
contributor to global warming or greenhouse effect. Fossil
fuel burning has perturbed the carbon cycle, and affected the
global climate, leading to worldwide research on climate
change and the carbon cycle [Intergovernmental Panel on
Climate Change, 2007; Heinsch et al., 2006; Urbanski et
al., 2007]. However, considerable uncertainties still remain
regarding the dynamics of carbon fluxes over both short and
long time scales, and effective strategies are necessary to
acquire relevant information about carbon flux processes
and to locate and quantify terrestrial sources and sinks of
carbon [Rahman et al., 2005]. Since GPP is a measure of
carbon uptake by vegetation, an improved knowledge about
GPP can provide us with a useful measure of the health of
ecosystem and the global carbon cycle.

[3] Estimating GPP of terrestrial ecosystems has been
challenging because of its dependence on a variety of
environmental factors [Makela et al., 2008]. Among the
existing methods, the light use efficiency (LUE) model
proposed by Monteith [1972] has been widely used [e.g.,
Potter et al., 1993; Landsberg and Waring, 1997; Coops et
al., 2005; Running et al., 2000; Xiao et al., 2004; Yuan et
al., 2007] to simulate the spatial and temporal dynamics
of GPP because of its theoretical basis and practicality
[Running et al., 2000]. LUE is defined as the amount of
carbon uptake per unit of absorbed photosynthetically
active radiation (APAR) by photosynthetic biomass. In
LUE, it is assumed that (1) the ecosystem GPP is directly
related to the amount of APAR and (2) the actual LUE may
be less than its theoretical value because of environmental
stresses such as low temperatures or water deficits [Yuan et
al., 2007]. The general form of LUE is

GPP ¼ e� fPAR� PAR ð1Þ

e ¼ emax � f ; ð2Þ

where PAR is the incident photosynthetically active
radiation (MJ m�2) per unit time, fPAR is the fraction of
incident PAR absorbed by the canopy, emax is the potential
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LUE (g C m�2 MJ�1 APAR) without environment stress, f
is a scalar ranging from 0 to 1 representing the reduction of
potential LUE under environmental stresses, fPAR � PAR
gives the APAR, and emax � f gives the realized LUE (e).
[4] In recent years, carbon fluxes measured by the eddy

covariance (EC) tower sites set up over forest, grasslands,
savannas, etc., have provided useful field measurements for
us to parameterize and to validate GPP models. Further-
more, it has been shown that combining these EC tower
measurements with remotely sensed (RS) data has the
potential to enhance modeling of GPP based on LUE. The
MODIS-GPP Algorithm [Running et al., 2004], Vegetation
Photosynthesis Model [Xiao et al., 2004], EC-LUE [Yuan et
al., 2007], etc., are some examples of successful application
of RS data in GPP modeling. The objective of this study is
to investigate the applicability of several RS variables in
GPP modeling, and to develop a solely RS data–based GPP
prediction model that does not depend on any supplemen-
tary meteorological data.

2. Review of Gross Primary Production Models

[5] The Moderate Resolution Imaging Spectroradiometer
(MODIS) sensor onboard the Terra and Aqua satellites
provides GPP product (MOD 17) using the LUE method
and inputs from the MODIS LAI/fPAR (MOD15A2) prod-
uct, land cover, and biome-specific climatologic data from
NASA’s Data Assimilation Office (DAO). In this model, the
light use efficiency (e) is calculated as

e ¼ emax � m Tminð Þ � m VPDð Þ; ð3Þ

where m(Tmin) and m(VPD) are multipliers that reduce emax

when cold temperatures and high vapor pressure deficit
(VPD), respectively, limit photosynthesis. These factors
range linearly from 0 to 1 where 1 denotes no inhibition and
0 denotes total inhibition. Values of emax, m(Tmin), and
m(VPD) are listed in the Biome Properties Look-Up
Table (BPLUT). By comparing the MODIS GPP product
with EC tower estimated GPP across a range of biomes,
Heinsch et al. [2006] identified three potential sources of
errors: (1) errors in meteorological input data derived from
NASA’s Goddard Earth Observing System (GEOS 4)
climate model, (2) errors in MODIS LAI/fPAR product,
and (3) errors in the land cover classification.
[6] The Vegetation Photosynthesis Model (VPM) is

another LUE model developed by Xiao et al. [2004] to
estimate GPP using PAR, Enhanced Vegetation Index (EVI),
Land Surface Water Index (LSWI) and coarse-resolution
temperature data according to equation (1). In VPM, e is
computed as

e ¼ emax � Tscalar �Wscalar � Pscalar; ð4Þ

where Tscalar, Wscalar, Pscalar are scalars to account for the
effects of temperature, water, and leaf age, respectively, on
emax. For this GPP model, it is critical to measure PAR
accurately at large spatial scale because PAR is highly
variable spatially.
[7] Sims et al. [2006] developed a simple model with EVI

as the only predictor, but it estimated GPP that were as good
or even better than the MODIS GPP product for some sites

during periods of active photosynthesis. However, this
model gave poor GPP estimates for sites subjected to
summer drought or sites dominated by evergreen vegeta-
tion. Sims et al. [2008] improved this model by adding an
additional predictor, Land Surface Temperature (LST). This
new model (Temperature and Greenness (TG) Model)
computes GPP (equation (5)) for a 16 day period.

GPP ¼ scaledLST� scaledEVI� m; ð5Þ

where m is a scalar,

scaledLST ¼ min
LST

30

� �
; 2:5� 0:05� LSTð Þð Þ

� �
ð6Þ

scaledEVI ¼ EVI� 0:1: ð7Þ

[8] The Global Production Efficiency Model proposed by
Prince and Goward [1995] also uses APAR to calculate the
global GPP using equation (1), but its e is based on

e ¼ emax � Ts � SM� VPD; ð8Þ

where Ts is the soil temperature and SM is the soil moisture
index.
[9] The C-Fix model of Veroustraete et al. [2002], driven

by temperature, radiation and fPAR, assumes that e = emax,
which is a fixed value (1.1 g C m�2 MJ�1 APAR) for
calculating GPP (equation (9)), while others [e.g., Yuan et
al., 2007] suggest reducing emax to e under limiting envi-
ronmental conditions.

GPP ¼ p Tatmð Þ � CO2fert � e� fPAR� c� Sg;d; ð9Þ

where p(Tatm) is the normalized temperature dependency
factor (value = 0 to 1), CO2fert is the normalized CO2

fertilization factor (value = 1 for no fertilization, and value
>1 for fertilization), c is the climate efficiency factor
(= 0.48), and Sg,d is the daily incoming global solar
radiation (MJ/m2/d).

3. Research Objectives

[10] Many of the aforementioned GPP models use
BPLUT for LUEs and coarse-resolution (e.g., 1� latitude
by 1.25� longitude) meteorological inputs that may contain
errors and lead to erroneous GPP estimates [Turner et al.,
2005; Zhao et al., 2005; Heinsch et al., 2006]. Therefore the
objectives of this study are: (1) to develop a GPP model
called the ‘‘Remotely Sensed-GPP’’ model (the R-GPP
model) without relying on coarse-resolution meteorological
variables, but only on four RS variables (two radiation
budget variables (AlbedoNIR and LST) and two ecosystem
variables (Global Vegetation Moisture Index (GVMI) and
EVI)); and (2) to assess the transferability of the proposed
R-GPP model and its potential to map carbon fluxes of
other deciduous forests.
[11] If a dependable GPP model solely relying on RS data

can be developed, it may be possible to estimate GPP
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accurately at global scale with a spatial resolution the same
as that of the satellite data, which for MODIS is 1 km.

4. Study Sites and Data Sets

4.1. Study Sites

[12] In this study, GPP estimated from three EC towers
located in three deciduous forests were used.
[13] 1. The Harvard Forest EC tower (42.54oN, 72.17oW)

within the Harvard Forest, Massachusetts, is part of the
Ameriflux network and is one of the longest-running tower
sites in the world since 1991 [Goulden et al., 1996;Urbanski
et al., 2007]. The site primarily consists of 60 to 80 year old
deciduous broadleaf forest dominated by red oak, red maple,
black birch, white pine, and hemlock [Goulden et al., 1996].
The climate of this forest is temperate, with warm humid
summers and annual mean temperature of about 7.9�C,
annual precipitation of about 1066 mm, and an average
annual plant growing season of about 161 days [Waring et
al., 1995].
[14] 2. The Morgan Monroe State Forest (MMSF) EC

tower (39.32oN, 86.41�W) of Indiana consists of 60 to
90 year old mixed hardwood forest and is dominated by
sugar maple, tulip poplar, white oak, and black oak. Its
mean annual temperature is 11.1�C, and mean annual
precipitation is 1012 mm [Curtis et al., 2002].
[15] 3. The University of Michigan Biological Station

(UMBS) tower (45.56oN, 84.7�W) ofMichigan is dominated
by 90 year old deciduous forest. Other species are middle-
aged conifer, northern hardwood, pine understay, aspen, and
hemlock. Its mean annual temperature is 6.2�C, and its mean
annual precipitation is 750 mm [Curtis et al., 2002].

4.2. Site-Specific Carbon Flux and Climate Data

[16] All the carbon flux data used in this study are means
of 8 day period. EC towers do not measure GPP directly, but
they measure CO2 exchange between vegetation and the
atmosphere in terms of net ecosystem exchange (NEE) using
the eddy covariance technique [Goulden et al., 1996]. Then
GPP is calculated from the daytime NEE (NEEd) and
daytime ecosystem respiration (Rd) by

GPP ¼ Rd � NEEd: ð10Þ

Rd is usually estimated from daytime temperature and a
temperature-respiration relationship usually developed from
nighttime NEE measurements that represent nighttime
respiration (autotrophic and heterotrophic), because plants
do not photosynthesize at night.

4.3. Remotely Sensed Data

[17] Among the 36 spectral bands of MODIS, with spatial
resolution ranging from 250 m to 1 km [Justice et al.,
1998], seven spectral bands are primarily designed for the
study of vegetation and land surface: blue (459–479 nm),
green (545–565 nm), red (620–670 nm), near infrared
(NIR) (841–875 nm, 1230–1250 nm), and shortwave
infrared (1628–1652 nm, 2105–2155 nm). MODIS daily
surface reflectances are radiometrically calibrated, cloud-
filtered, atmospherically corrected for molecular scattering,
ozone absorption and aerosols, spatially and temporally
gridded, and adjusted for view angle influences. For the

three study sites, the 8 day surface reflectance data
(MOD09A1, Collection 5) of the four spectral bands, blue,
red, NIR (841–875 nm), and shortwave infrared (1628–
1652 nm), were collected for 2000–2005 and then used to
calculate vegetation indices, EVI, and GVMI.
[18] The other 8 day composite MODIS data sets used in

this study include the 1 km LST (MOD11A2, collection 5)
and 1 km GPP product (MOD17A2, Collection 5) described
in section 2. MOD11A2 is retrieved using the Split-Window
algorithm and the thermal infrared bands of MODIS [Wan
and Dozier, 1996]. We also collected MODIS albedo
product, which is produced every 8 days with 16 days of
acquisition. The Bidirectional Reflectance Distribution
Function (BRDF) coefficients from MCD43A1 were used
to calculate the actual albedo for the visible (VIS), NIR, and
shortwave bands (0.3–0.7, 0.7–5.0, and 0.3–5.0 mm,
respectively) as a function of optical depth, solar zenith
angle, and band [Schaaf et al., 2002; Lucht et al., 2000]
(http://daac.ornl.gov/MODIS/MODIS-menu/MCD43.html).
[19] We estimated GPP with 1 km resolution, which is

the same as that of MODIS GPP. In other words, we used a
1 km � 1 km area within which the EC tower is located to
calibrate the R-GPP model instead of the more common
approach of using RS data averaged over of N � N km area
(N = 3 or 5, or an even larger number) because the footprint
of the EC tower, which depends on the height of flux tower,
wind speed, topography, etc., is usually a few hundred
meters to 1 km [Schmid et al., 2002; Xiao et al., 2004].
Therefore using predictors averaged over areas of N � N km
in size may be too coarse to represent a tower footprint
and may cause a scale mismatch problem between simu-
lated and tower GPP. From this perspective, using RS data
at 1 km � 1 km resolution is a better strategy as long as
MODIS data have been properly corrected geometrically.
Since the RS data are of 1 km (LST and MODIS GPP)
and 500 m (reflectance and Albedo) resolutions, for LST
and MODIS GPP, we extracted digital values of a 1 km
pixel within which the EC tower is located, while for
reflectance and albedo, we used the average value of 2 �
2 pixels that represents the same 1 km � 1 km area.

5. Research Methodology

[20] The research approach undertaken in this study can
be summarized as follows: (1) selecting EVI, GVMI,
AlbedoNIR, and LST as the model predictors and investi-
gating the relationships between these model predictors and
few environmental variables such as air temperature, PAR,
and VPD, which have been widely used to account for the
environmental stresses on GPP; (2) calibrating and validat-
ing the R-GPP model using the Harvard Forest tower
estimated GPP data of years 2000–2003 and 2004–2005,
and comparing its results with the MODIS GPP product
(MODIS-17); and (3) testing the transferability of the R-GPP
model calibrated for Harvard Forest to two other deciduous
forests sites: Morgan Monroe State Forest and University of
Michigan Biological Station of United States.

5.1. R-GPP Model Predictors

5.1.1. Global Vegetation Moisture Index
[21] Previous studies have demonstrated the possibility of

using NIR and short wave infrared bands to retrieve leaf and
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canopy water content (g/m2) using Landsat-TM data [Hunt
and Rock, 1989], hyperspectral data [Gao, 1996; Serrano et
al., 2000], and VEGETATION (VGT) sensor data [Ceccato
et al., 2001]. Recently, Ceccato et al. [2002a, 2002b]
proposed to retrieve equivalent water thickness (EWT) at
the canopy level using GVMI from the VGT sensor,

GVMI ¼ NIRþ 0:1ð Þ � SWIRþ 0:02ð Þ
NIRþ 0:1ð Þ þ SWIRþ 0:02ð Þ ; ð11Þ

where NIR and SWIR are reflectance of the rectified NIR
band and short wave infrared bands, respectively. Ceccato
et al. [2002b] tested GVMI in retrieving EWT from four
different ecosystems and found that water content retrieved
from GVMI was consistent with field measured water

content. Other studies also demonstrated the applicability of
GVMI in retrieving EWT [e.g., Danson and Bowyer, 2004;
Du et al., 2005].
[22] To incorporate the effect of water stress in the R-GPP

model, we used GVMI computed from MODIS reflectance
products. Although GVMI is not correlated with the GPP of
Harvard Forest throughout the year (Table 1), they are
significantly correlated (R2 = 0.60) during the growing
season (mid April to 27 October [Urbanski et al., 2007])
of this deciduous study site. However, in early spring, late
fall, and winter, high values of GVMI could still be
observed because of snow cover above or below the canopy
(Figure 1a). Therefore, during these cold periods, GPP is
not related to GVMI but is probably controlled by the LST,
which will be explained in section 5.1.4.
[23] Figure 1a (right) shows that GPP increases with

GVMI (related to soil moisture) during the growing season.
However, Figure 1a (left) also shows that when GVMI is
around 0.4 to 0.5, GPP fluctuates widely from 5 to 14,
showing little relation to GVMI because when there is
sufficient soil moisture (water is not a limiting factor),
photosynthesis will probably depend more on temperature,
which is related to the incoming solar radiation. Yuan et al.
[2007] also reported that GPP is controlled either by air
temperature or by soil moisture, whichever is the most
limiting.

Table 1. Correlations Between Model Predictors and GPP at the

Harvard Forest for 2000–2005

Predictor Coefficient of Determination (R2)a

GVMI 0.11
GVMI (growing season) 0.60
AlbedoNIR 0.82
EVI 0.84
LSTs 0.71

aCorrelations significant at 1% significant level are shown in bold.

Figure 1. (left) Nonlinear/linear regression and (right) comparison of seasonal dynamics between
GPP and (a) GVMI, (b) AlbedoNIR, and (c) EVI for 2000 to 2005 at Harvard Forest. All points represent
8 day means.
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5.1.2. Near-Infrared Albedo
[24] Albedo (a), the fraction of incident solar radiation

reflected by a surface (equation (12)), plays a key role in
partitioning the total radiative flux into absorbed, sensible,
latent, and reflected fluxes [Bounoua et al., 2000]. The net
radiation Rn is given as

Rn ¼ Sin � Sout þ Lin � Lout

¼ Sin 1� að Þ þ Lin � Lout; ð12Þ

where Sin and Sout are the incoming and outgoing solar
(shortwave) radiation, respectively, and Lin and Lout are the
downwelling and upwelling longwave radiation at the
surface, respectively.
[25] Albedo influences the radiation absorbed by plant

canopies and thereby affects physical and biogeochemical
processes such as photosynthesis, energy balance, evapo-
transpiration, and respiration [Wang et al., 2001, 2002a,
2002b]. Furthermore, surface albedo also affects rainfall,
vegetation growth [e.g., Bounoua et al., 2000; Laval and
Picon, 1986;Wang and Davidson, 2007], and even droughts
that could lead to desertification [Dirmeyer and Shukla,
1996; Knorr et al., 2001]. The albedo of vegetation, unlike
that of bare soil, shows temporal variability due to the
seasonal behavior of plant phenology such as green-up,
peak greenness, dry-down, and senescence. For example,
Song [1998] found that the albedo of a wheat field de-
creased from the peak green to senescence stage. Although
some previous studies on GPP [e.g., Ichii et al., 2003;
Landsberg and Waring, 1997; Gebremichael and Barros,
2006; Kimball et al., 1997] used albedo to calculate
radiative fluxes, as far we know, none of them reported a
direct relationship between NIR albedo and GPP, and most
of these models used a constant albedo without considering
its temporal variability.
[26] In this study, albedo at the NIR band, AlbedoNIR

(0.7 to 5 mm) has been used because the reflectance of
vegetation is very strong at NIR band, and likely because of
this, it is the most commonly used albedo in ecosystem
modeling [Wang and Davidson, 2007; Ghulam et al., 2007;
Ollinger et al., 2008]. Since only 16 day resolution albedo
data are available from MODIS, we have used that 16 day
albedo product produced every 8 days (e.g., albedo of date 1
corresponds to average albedo of days 1 to 16 while albedo
of date 9 corresponds to average albedo of days 9 to 24). To
estimate the GPP of any 8 day period, we have used
AlbedoNIR averaged over those particular 8 days and the
previous 8 days while the other predictors were averaged
over those particular 8 days. For example, to calculate the
average GPP of days 9 to 16 (17 to 24), we have used the
average albedo of days 1 to 16 (9 to 24) while the other
predictors were averages of days 9 to 16 (17 to 24).
Therefore the R-GPP remains as an 8 day GPP model.
[27] Table 1 and Figure 1b show that the seasonal

dynamics of AlbedoNIR and GPP are strongly correlated
with each other for the Harvard Forest site with a R2 = 0.82
for the 2000–2005 data, which indicates that using only
AlbedoNIR, GPP may be modeled with comparable or better
accuracy than the GPP estimates from MODIS (R2 = 0.78
for 2000–2005) for this site. AlbedoNIR gradually increases
with the green-up of deciduous forest because of the high

reflectance of canopy leaves in the NIR band and continues
until the peak green stage and then gradually decreases with
the senescence of leaves (Figure 1b, right), as was also
observed by Wang [2005] for a boreal deciduous forest of
Saskatchewan, Canada.
5.1.3. Enhanced Vegetation Index
[28] EVI produces vegetation signal with improved veg-

etation monitoring through canopy background and atmo-
spheric corrections [Waring et al., 2006]. It is more sensitive
than the popular normalized difference vegetation index
(NDVI) in high biomass regions.

EVI ¼ G
NIR� R

NIRþ C1R� C2Bþ L
; ð13Þ

where NIR, R, and B are atmospherically corrected surface
reflectance in the near-infrared, red, and blue bands,
respectively; G is the gain factor; L is the canopy
background adjustment factor that addresses nonlinear,
differential NIR and red radiant transfer through a canopy;
and C1 and C2 are the coefficients of the aerosol resistance
term, which uses the blue band to correct the aerosol
influences in the red band. In the EVI algorithm, L = 1,
C1 = 6, C2 = 7.5, and G = 2.5. EVI has been shown to be a
good predictor of growing season GPP for many sites and it
was used as a predictor in some previous models [Xiao et
al., 2004]. In this study we found that the seasonal
dynamics of GPP agrees reasonably well with EVI (R2 =
0.84) for the Harvard Forest (Figure 1c) and so EVI was
selected as a predictor.
5.1.4. Land Surface Temperature
[29] LST is a potential predictor for GPP estimation

because it can incorporate the effect of temperature and
VPD on vegetation [Hashimoto et al., 2008]. It is highly
correlated with vegetation dynamics [Sun and Kafatos,
2007] and is positively correlated with NDVI in high
latitudes [Karnieli et al., 2006]. Boegh et al. [1999] found
the slope of LST/NDVI to be related to the evapotranspi-
ration of Sahel.
[30] The scatterplot of GPP with LST (Figure 2a) shows

that below 0�C, there is no photosynthesis while above 0�C,
GPP slowly increases with LST, which implies that 0�C can
be used as a temperature threshold for this deciduous forest
to define periods of active photosynthesis. Some studies
[Sims et al., 2008; Yuan et al., 2007] reported that photo-
synthesis is predominantly controlled by temperature only
at the beginning and the end of a growing season, but by
moisture conditions throughout the growing season. There-
fore we used a scaled LST (LSTs) (equation (14)) to set GPP
to zero when LST is below 0�C.

LSTs ¼
LST

LSTmax

for LST > 0�C

LSTs ¼ 0 for LST � 0�C;

ð14Þ

where LST is the observed LST and LSTmax is the
maximum LST. In this study, LSTmax is set to 30�C partly
because it has been used as the optimum LST in some
other studies [Sims et al., 2008]. Figure 2b shows that
GPP is strongly correlated with LSTs (R2 = 0.71).
Throughout the summer, GPP increases with increasing
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LSTs; but as the season enters into fall, LSTs decreases and
GPP drops because the deciduous forest slowly drops its
leaves (Figure 2c). However, it is also found that GPP
does not respond instantaneously with temperature rise
during the early growing season (at low LSTs), which is
attributed to the lag in the leaf development of deciduous
forest in the spring (Figures 2b and 2c). Furthermore, low
LSTs during the start and the end of each growing season
restricts water and nutrient uptake and hence it affects
photosynthesis [Sims et al., 2008].

5.2. Relationships Between Model Predictors and
Other Environmental Variables

[31] The relationships between the R-GPP model predic-
tors (EVI, LSTs, GVMI, and AlbedoNIR) and some envi-
ronmental variables (PAR, VPD, and air temperature)
measured at the EC tower site of Harvard Forest were
examined. These environmental variables have been popu-
lar predictors of carbon flux, but they vary substantially
over space and usually are only available as limited ground
measurements or coarse-resolution, gridded data. Therefore,

if we can establish meaningful relationships between PAR,
air temperature, VPD, and aforementioned RS predictors, it
will be possible to get a continuous estimation of carbon
fluxes on the basis of RS predictors as they are acquired on
a continuous basis.
[32] PAR was found to be reasonably correlated with the

R-GPP model predictors for 2000 to 2005 (Table 2 and
Figure 3). As GVMI influences photosynthesis only in the
active photosynthesis period, and during nonactive period
(winter) it is affected by snow cover above or below the
canopy, the seasonal cycle of GVMI and PAR did not match

Figure 2. Scatterplot and polynomial fit between GPP and (a) LST and (b) scaled LST (LSTs), and
(c) seasonal dynamics of GPP and LSTs for 2000 to 2005 at the Harvard Forest. All points represent 8 day
means.

Table 2. Correlations Between Model Predictors and Different

Environmental Variables for 2000–2005 at Harvard Forest

Variables

Coefficient of Determination (R2)a

GVMI AlbedoNIR EVI LSTs

PAR 0.02 0.47 0.46 0.64
Tair 0.01 0.67 0.64 0.92
VPD 0.01 0.30 0.29 0.60
aCorrelations significant at 1% significant level are shown in bold.
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during winter and the overall correlation between PAR and
GVMI was relatively poor (Table 2). However, LSTs, EVI,
and AlbedoNIR followed the seasonal variation of PAR quite
systematically, which implies that these variables can pos-
sibly replace PAR, which is one of the most critical
predictors in the estimation of GPP [Xiao et al., 2004].

[33] EVI, AlbedoNIR, and LST were also found to be
consistently correlated with air temperature (Tair) (Figure 4)
and VPD (Figure 5), which have been key predictors in
many GPP models [Yuan et al., 2007]. Since the correlation
between Tair and LSTs is very high (R2 = 0.92), it likely
means that LSTs can replace Tair. Moreover, using LSTs

Figure 3. Comparison of seasonal dynamics of photosynthetically active radiation (PAR) with seasonal
dynamics of (a) GVMI, (b) AlbedoNIR, (c) EVI, and (d) LSTs for 2000 to 2005 at Harvard Forest. All
points represent 8 day means.

Figure 4. Comparison of seasonal dynamics of air temperature (Tair) with seasonal dynamics of
(a) GVMI, (b) AlbedoNIR, (c) EVI, and (d) LSTs for 2000 to 2005 at Harvard Forest. All points represent
8 day means.
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instead of Tair will allow us to use data of fine spatial
resolution instead of limited ground measured data from
climate stations or coarse-resolution data simulated from
global climate models (e.g., NASA’s Data Assimilation
Office GEOS 4 global climate model). The high values of
GVMI because of snow cover effects during winter weak-
ened the overall correlation (Table 2) of GVMI with Tair and
VPD (Figure 5a). Given that GPP is controlled by LST
during winter, the poor correlation of GVMI with GPP and
other environmental variables during winter may only have
marginal effect on the winter GPP simulated by the R-GPP
model.

6. R-GPP Model Development and Results

[34] Given that GVMI, EVI, AlbedoNIR, and LSTs are
correlated to GPP and to PAR, VPD, and air temperature,
which are key elements of many GPP models, we propose a
remotely sensed GPP (R-GPP) model (equation (15)) based
on these four RS predictors only,

GPP ¼ k � GVMIa � LSTb
s � AlbedocNIR � EVId ; ð15Þ

where k is a scalar, and a, b, c, and d are exponents. These
model parameters were estimated using the estimated GPP
of 2000 to 2003 from the EC tower located at the Harvard
Forest site and a nonlinear optimization scheme, the
Generalized Reduced Gradient (GRG2) [Lasdon et al.,
1978; Spaulding, 1998]. By GRG2, the optimized values of
k, a, b, c, and d have been found to be 114, 0.885, 1.05,
0.695, and 0.933, respectively.
[35] The performance of R-GPP was evaluated in terms

of the coefficient of determination (R2) and root-mean-
square error (RMSE). The calibration results show that
R-GPP model could capture the seasonal dynamics of the

observed GPP accurately (Figure 6 and Figure 7a (left)
and Table 3). With respect to the EC tower estimated GPP,
it is clear that R-GPP (R2 = 0.95, RMSE = 1.02 mmol C/m2/s)
was more efficient than the MODIS GPP algorithm (R2 =
0.80, RMSE = 2.78 mmol C/m2/s) for the Harvard Forest
site, especially during the peak growing season. In almost all
years tested, the MODIS algorithm showed a marginal
overestimation in the early part of the plant growing season
and an underestimation in the peak growing season (June to
September) (Figure 7b (left), as was also reported by Xiao et
al. [2004] for the Harvard Forest site. The poor estimate of
MODIS-GPP likely arises from uncertainties related to
meteorological inputs, and from erroneous land cover clas-
sification and LAI/fPAR product [Heinsch et al., 2006] used
in the MODIS algorithm (as explained in section 2). More-
over, emax used in the MODIS GPP algorithm, which is

Figure 5. Comparison of seasonal dynamics of vapor pressure deficits (VPD) with seasonal dynamics
of (a) GVMI, (b) AlbedoNIR, (c) EVI, and (d) LSTs for 2000 to 2005 at Harvard Forest. All points
represent 8 day means.

Figure 6. Scatterplot of R-GPP model simulated gross
primary production (GPP) and eddy covariance tower
estimated GPP for the (a) calibration (2000–2003) and
(b) validation stages (2004–2005) at the Harvard Forest
site. All points represent 8 day means.
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biome specific, has been found to be smaller than the emax

value observed at the Harvard Forest [Turner et al., 2003].
Using an underestimated emax may cause an underestimated
GPP.
[36] The calibrated R-GPP model (R2 = 0.92, RMSE =

1.62 mmol C/m2/s) also outperformed the MODIS GPP
algorithm (R2 = 0.77, RMSE = 3.35 mmol C/m2/s) in the
validation stage (2004–2005) of the Harvard Forest. The
MODIS GPP algorithm underpredicted the EC tower GPP
quite substantially during the growing season (Figure 7b,
right) of 2004–2005 whereas the R-GPP model’s prediction
was relatively close to the EC tower GPP (Figure 7a, right).
[37] Even though the overall simulated GPP of the R-GPP

model closely matched the observed, occasionally there
were large discrepancies between them (especially in the
validation stage), partly because of the limitations of R-GPP
and possibly because of the error in the observed GPP
estimated from NEEd and Rd, which are subjected to
uncertainties [Xiao et al., 2004]. Moreover, there are gaps
in both NEE and Rd data, and gap-filling steps of these data
are still subjected to debates [Falge et al., 2001]. Therefore,
even though the gap-filled ‘‘estimated GPP’’ data can be
used to assess the performance of GPP models reasonably
accurately, some uncertainties are expected.

7. Transferability of R-GPP Model

[38] Given that EC towers are established only in limited
sites, it will be useful to examine the transferability of the
proposed R-GPP model calibrated for the Harvard Forest
site to other deciduous forests located in northeastern
United States to estimate their carbon fluxes. Intuitively,
the degree of transferability will depend on the degree of

similarity in terms of vegetation types and climate regimes
and how accurately the four predictors (GVMI, AlbedoNIR,
EVI, and LSTs) measure the basic environmental properties
such as moisture condition, reflectivity, and surface temper-
ature. Gilmanov et al. [2005] argued that models based on
vegetation indices such as NDVI (and presumably EVI) are
transferable as long as vegetation types and age are com-
parable between the sites, since these are two important
factors to be considered in estimating GPP [Desai et al.,
2008]. To test its transferability, the R-GPP model devel-
oped out of the Harvard Forest site was applied to UMBS
and MMSF forest sites, which are also mature deciduous
forests with stand age 60 to 90 years.
[39] Figure 8a (left) shows that the R-GPP model devel-

oped for the Harvard Forest simulated the observed GPP of
MMSF more accurately (R2 = 0.93, RMSE = 1.47 mmol

Figure 7. Annual cycle of eddy covariance tower estimated gross primary production (GPPest) and
(a) R-GPP model predicted GPP (GPPsim) and (b) MODIS GPP (GPPMODIS) product for the Harvard
Forest site during (left) the calibration (2000–2003) and (right) validation stages (2004–2005). All
points represent 8 day means.

Table 3. Correlation Between Observed GPP and Either R-GPP

Model Predicted GPP or MODIS GPPa

Site Study Period

Observed
GPP Versus
Simulated

GPP
(R-GPP
Model)

Observed
GPP Versus
MODIS GPP

R2 RMSE R2 RMSE

Harvard Forest 2000–2003 (Calibration) 0.95 1.02 0.80 2.78
2004–2005 (Validation) 0.92 1.62 0.77 3.35

MMSF 2000–2005 0.93 1.47 0.74 3.54
UMBS 2000–2003 0.94 0.95 0.91 1.48

aAll GPP are mean values of 8 day periods. Correlation is R2. Unit of
RMSE is mmol C/m2/s.
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C/m2/s) than the MODIS GPP algorithm (R2 = 0.74,
RMSE = 3.54 mmol C/m2/s). The MODIS GPP algorithm
consistently showed an underestimation in the peak grow-
ing season for most of the years (2000–2005) and an
overestimation in the early growing seasons for some
years (Figure 8b, left). In contrast, the R-GPP model only
showed minor overestimation during the peak growing
season of 2000–2002 and marginal underestimation in
2004.
[40] For the UMBS site, the R-GPP model’s predicted

GPP also followed the seasonal dynamics of the observed
GPP very well (Figure 8a, right), and the agreement is
marginally better than the GPP estimated by the MODIS
algorithm, for example, R2 = 0.94 versus R2 = 0.91 (Table 3).
On the whole, for UMBS, the MODIS GPP product showed
better estimation during the early growing season and peak
season (Figure 8b, right) than it did for the other two sites.
[41] Given that both UMBS and MMSF test sites are

located more than about 1000 km away from the Harvard
Forest, it seems that the proposed R-GPP model using the
four selected RS predictors can generally estimate the GPP
of deciduous forests located at the northeastern United
States. Even though simple in nature and built on the basis
of the RS data only, the R-GPP model possesses the
necessary physical basis to capture the basic ecological
and environmental functioning of deciduous ecosystems,
which is probably why R-GPP turns out to be more
effective than the MODIS GPP in characterizing the sea-

sonal variability of GPP of three deciduous ecosystems of
northeastern United States.

8. Discussion

[42] In recent years, RS data–based models have dem-
onstrated strong potential in GPP modeling, for example,
MODIS GPP algorithm [Running et al., 2004], TG model
[Sims et al., 2008], VPM [Xiao et al., 2004], MOD-SIM-
Cycle [Hazarika et al., 2005], and EC-LUE [Yuan et al.,
2007]. Our proposed R-GPP model is different from other
GPP models because it is dependent solely on RS data,
whereas the majority of the RS-based models (e.g., MODIS
GPP) require supplementary meteorological inputs that are
often available with spatial resolutions poorer than the RS
variables, and as a result may produce significant errors in
regional scale GPP estimation [Heinsch et al., 2006]. Our
proposed R-GPP model is likely closest to the TG model of
Sims et al. [2008], which is also solely RS data based.
However, the R-GPP model estimates 8 day means of GPP
while the TG model computes 16 day means of GPP using
EVI and LST, as described before.
[43] Although the overall performance of the R-GPP

model was encouraging, there are still discrepancies
when compared with field observations, especially for the
Harvard Forest during the growing season of the validation
period. The surface reflectance products from 8 day com-
posite images are likely a key factor that may affect the

Figure 8. Annual cycle of eddy covariance tower estimated gross primary production (GPPest) and
(a) R-GPP model predicted GPP (GPPsim) and (b) MODIS GPP (GPPMODIS) product for (left) the
Morgan Monroe State Forest (MMSF) during 2000–2005 and (right) University of Michigan Biological
Station Site (UMBS) during 2000–2003. All points represent 8 day means.
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accuracy of GPP predicted by the R-GPP model. The
compositing method (e.g., currently MODIS reflectance
data is composited on the basis of a minimum-blue criterion
that selects the clearest conditions over the period) could
result in some bias, so EVI and GVMI computed from
the reflectance products may not reflect the average condi-
tion of that 8 day period [Xiao et al., 2004]. Therefore
GPP estimated by the R-GPP model may differ from the
observed 8 daymeanGPP. This problem can be partly resolved
by using daily images as input to the R-GPP model, although
this would incur large increases in computer processing.
[44] Another factor that may affect the results of the

R-GPP model is the 16 day albedo of MODIS. To estimate
the GPP of any 8 day period, the R-GPP model uses
AlbedoNIR averaged over that particular 8 days and the
previous 8 days (section 5.1.2). This averaging may intro-
duce some discrepancies. Moreover, the nutrition limit is not
explicitly considered in the R-GPP model, which partly
contributed to the discrepancies between the R-GPP model
output and that estimated from the EC tower.
[45] This study demonstrated that combining indices such

as GVMI, EVI, AlbedoNIR, etc., in a meaningful manner can
capture the temporal dynamics of photosynthetic activities
of deciduous ecosystems in northeastern United States.
GVMI and EVI enabled us to account for the soil moisture
state and the overall status of vegetation, while albedo and
LST provided crucial information about the surface energy
necessary for plant growth [Huete, 2005]. This study has
demonstrated the applicability of these predictors and their
quantitative relationships with GPP. It may be useful to
examine other vegetation indices (e.g., the normalized
difference water index) to more comprehensively model
the seasonal dynamics of GPP across different ecosystems.
[46] At present about 400 EC tower sites are operating

worldwide, under the FLUXNET network, on a continuous
and long-term basis to collect information on carbon, mois-
ture, and energy fluxes (http://daac.ornl.gov/FLUXNET/).
These towers are located in different parts of the world and
belong to different climatic regimes. Multiyear GPP data
from EC towers located in various deciduous forests can be
used to validate the R-GPP model. However, some of these
flux data are not yet publicly available, because the analysis
and publications of flux data are time consuming [Xiao et al.,
2004]. When data from many EC tower sites become
publicly available, we will be in a better position to more
comprehensively validate this R-GPP model, to better iden-
tify various sources of error, and to fine tune the model.
[47] The time scale of the R-GPP model is dictated by the

temporal resolution of the MODIS data. Among the four
model predictors, albedo is not available on a daily basis,
and so it is not possible to compute daily GPP using the
R-GPP model, which for now can only operate at an 8 day
period. Some LUE based models [e.g., Yuan et al., 2007;
Makela et al., 2008] can be used to model daily GPP
variations, which, however, depend on meteorological data
whose limitations have already been discussed in section 2.

9. Summary and Conclusions

[48] We have developed a GPP estimation model, called
the R-GPP model, solely based on four remotely sensed
(RS) variables, namely the EVI, near-infrared albedo,

GVMI, and LST as model predictors. The model was
calibrated (2000–2003) and validated (2004–2005) on the
basis of GPP estimated from fluxes of an eddy covariance
tower located in the Harvard Forest, United States. The
summary of the results are listed below.
[49] 1. The proposed model predicted the GPP of the

Harvard Forest accurately, with R2 = 0.95 and R2 = 0.92
in the calibration and the validation periods, respectively,
which is much better than the MODIS-GPP algorithm (R2 =
0.80 and R2 = 0.77 in the calibration and validation stages,
respectively) even though the latter is relatively complex
and requires meteorological inputs which are mostly avail-
able in coarse resolution only.
[50] 2. The model predictors individually showed strong

correlation to the GPP of the Harvard Forest for 2000–2005
(R2 = 0.60, 0.84, 0.82, and 0.71 for GVMI (during growing
season), EVI, AlbedoNIR, and LSTs, respectively). Further-
more, for the Harvard Forest, the AlbedoNIR or the EVI
itself could predict GPP marginally better than the MODIS
GPP (R2 = 0.78 for 2000–2005). Therefore, the R-GPP
model outperformed the MODIS-GPP algorithm since it is
designed to take the advantage of the combined contribu-
tions of all these four RS predictors.
[51] 3. The R-GPP model predictors, such as EVI, Albe-

doNIR, and LST, have been shown to be correlated with a
few other environmental variables such as air temperature,
PAR, and VPD, which have been widely used as predictors
in modeling GPP. The relationships between them imply
that the predictors of R-GPP model, which are available in
relatively fine spatial resolutions, can replace meteorologi-
cal predictors of coarse spatial resolutions in GPP modeling.
[52] 4. The transferability of the R-GPP model, calibrated

for the Harvard Forest, was tested by applying it to two other
deciduous forest sites, MMSF and UMBS. The R-GPP
model captured the seasonal dynamics of the observed
GPP of MMSF (R2 = 0.93) and UMBS (R2 = 0.94) more
accurately than the MODIS GPP algorithm (R2 = 0.74 and
R2 = 0.91 for MMSF and UMBS, respectively). Appar-
ently the R-GPP model is transferable and can estimate the
GPP of other similar deciduous forests, especially those
that are located in northeastern United States.
[53] Although the proposed R-GPP model has shown

promising results in estimating GPP of several deciduous
forests of northeastern United States, further validation is
needed to test the robustness of the R-GPP model and its
applicability in different climatic and biophysical condi-
tions. The model parameters may need to be refined for
other climatic regimes and biomes. Further study is also
needed to determine whether net primary production can be
estimated from the RS variables used in this study.
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