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Summary Although tree nutrition has not been the primary
focus of large climate change experiments on trees, we are be-
ginning to understand its links to elevated atmospheric CO2

and temperature changes. This review focuses on themajor nu-
trients, namely N and P, and deals with the effects of climate
change on the processes that alter their cycling and availability.
Current knowledge regarding biotic and abiotic agents of
weathering, mobilization and immobilization of these ele-
ments will be discussed. To date, controlled environment stud-
ies have identified possible effects of climate change on tree
nutrition. Only some of these findings, however, were verified
in ecosystem scale experiments. Moreover, to be able to pre-
dict future effects of climate change on tree nutrition at this
scale, we need to progress from studying effects of single fac-
tors to analysing interactions between factors such as elevated
CO2, temperature or water availability.

Keywords: environmental change, nitrogen, nutrient cycle,
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Introduction

The cycling of nutrients between the soil and plants is one of
the defining aspects of ecosystem functioning. The availability
of nutrients for plant uptake can limit the productivity and even
the very survival of forest ecosystems (Rodin et al. 1967). Cru-
cial for plant metabolism and growth, the accessibility of nu-
trients in the soil is the result of several biogeochemical
processes, often involving complex feedbacks. While only
16 elements have been identified as essential to higher plants,
a lack of any of these elementsmakes it impossible for plants to
complete their life cycle (Chesworth 2008). According to the
amount of each element required for normal plant growth, they
are commonly classified as macronutrients and micronutrients
(Allaway 1975). Macronutrients are required in large amounts

and usually constitute more than 0.1% dry mass (C, H, O, N, P,
K, Ca, Mg, S), while micronutrients are needed only in small
quantities not exceeding 0.05% drymass (Zn, Fe,Mn, Cu,Mo,
B, Cl). Plants mostly take up C from the air, while the rest of
the nutrients are acquired almost exclusively through plant
root systems. The immediate availability of all soil nutrients
is dependent on the rate of their uptake (e.g., by plant roots,
fungi, microorganisms) and the rate of replacement (e.g., bac-
terial N fixation, organic matter mineralization, atmospheric
deposition, weathering).
Forest trees are characterized by the C3 photosynthetic

pathway (Ainsworth and Long 2005). As such, their produc-
tivity and demand for nutrients is greatly affected by atmo-
spheric CO2 concentration and temperature. Terrestrial
ecosystems are already exposed to atmospheric CO2 concen-
tration higher than that encountered since the early Miocene
(Pearson and Palmer 2000), and despite recent efforts to limit
global CO2 emissions, the atmospheric concentration of this
greenhouse gas is likely to exceed the worst-case scenario
considered by the Intergovernmental Panel on Climate
Change (IPCC) (Raupach et al. 2007). Any further increase
is likely to significantly impact on plant growth, both directly
by stimulating photosynthesis (Drake et al. 1997) and indi-
rectly by inducing planetary warming (IPCC 2007). A great
number of studies have been aimed at elucidating the re-
sponses of a wide range of plants to rising CO2 and temper-
ature. In general, a stimulation of biomass production with
increasing CO2 concentration is observed, although its future
extent is likely to be limited by nutrient availability. Further,
stimulation of C metabolism processes such as photorespira-
tion and mitochondrial respiration by increasing ambient
temperature is likely to decrease net C uptake in the future
(Atkin et al. 2000, Weston and Bauerle 2007). In a positive
feedback loop, rising temperature may enhance organic mat-
ter mineralization and mineral weathering rates—thus allevi-
ating, at least temporarily, some nutrient limitations.
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To date, most physiological observations on trees exposed
to changing CO2 or temperature have been carried out in con-
trolled environments, providing a considerable amount of in-
formation about the likely responses of trees and their
capacity to adapt to changing environment. However, due
to the size of mature trees, much of this research has been
done on seedlings or plant tissues removed from mature in-
dividuals, somehow limiting the predictive power of these
experiments for natural conditions. Free-Air Carbon Dioxide
Enrichment technology (FACE) was therefore developed to
verify scientific findings on the effects of elevated CO2 in
open-air conditions (Lewin et al. 1994, Miglietta et al.
2001). Similarly, warming experiments were established in
forests to test their reaction to rising temperature. Because
of obvious technical challenges associated with warming of
an entire forest canopy, such experiments have focused main-
ly on assessing the impacts on the soil (Bradford et al. 2008,
Schindlbacher et al. 2008). Understanding the controls and
processes that determine the cycling and the resulting avail-
ability of nutrients still remains a key challenge, chiefly be-
cause most of the studies focus only on the immediately
available pools in soils and in plants. Nutrient availability
is hugely variable, both in space and in time, and ultimately
this variation can be more important for tree growth than the
changes in tree physiology driven by climate (Salih et al.

2005). Since all major biogeochemical processes involved
in nutrient cycling in forests will be impacted by changing
CO2 and temperature (Figure 1), only an integrative approach
to studying nutrient cycles can provide reliable information
necessary for predictions of future forest growth.
Currently, we have sufficient information relating to the

availability of essential nutrients, their roles in plant metabo-
lism and their cycles; the predicament we are facing now is
that most of this information relates to impacts of single fac-
tors or to one nutrient at a time. To understand the full impact
of climate change, we need information about multiple inter-
acting factors, which at the moment is very scarce. To sum-
marize present knowledge, we present known effects of
elevated CO2 and temperature on tree nutrition, focusing on
the mobilization and immobilization processes rather than the
pools. We identify existing gaps in knowledge and suggest
research priorities for the near future.

Effects of elevated CO2

Photosynthetic carbon uptake by C3 plants is enhanced by
elevated CO2 (Ainsworth and Rogers 2007) and has been
shown to translate to a consistent stimulation of net primary
productivity (NPP) in trees by about 23% (Norby et al. 2005).

Figure 1. Schematic diagram showing the most important biogeochemical processes in forest ecosystems which will be affected by changes in
atmospheric CO2 concentration and ambient temperature. Present ecosystem service provision is also likely to be affected (adapted from Camp-
bell et al. 2009).
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The increase in productivity expected from trees growing in
elevated CO2 is larger than the one estimated in crops, espe-
cially in the case of trees with indeterminate growth (Long et
al. 2004). However, lasting increase in tree growth in elevat-
ed CO2 can only be achieved if some combination of in-
creased nutrient absorption and improved nutrient use
efficiency is attained. Even though all macro- and micronu-
trients are essential for normal plant growth, apart from a few
macronutrients, we only have very limited or no information
about the interactions between the factors of climate change
and tree physiology of nutrients. For the purpose of this re-
view, we will therefore concentrate on the elements that have
been fairly well investigated so far and the physiology and
cycling of which is reasonably well understood in the frame
of climate change.

Nitrogen

Due to the strong coupling between C and N cycles (Rastetter
and Shaver 1992), N is the element most likely to limit tree
growth in a future high-CO2 world (Reich et al. 2006). The
amount of N available for plant uptake in forests is determined
by several processes, such as organic matter depolymerization
and mineralization, microbial immobilization and competition

between microbes and plants, and depends on soil nutrient sta-
tus and ecosystem type (Figure 2). Boreal forests, where most
N is locked up in undecomposed organic matter, are likely to
have different gearing between C and N cycles than temperate
forests where most N is in live biomass. Different forest types
therefore need to be treated separately when considering pres-
ent and future N limitation to their growth.
Increased N immobilization by plants and microbes

(Holmes et al. 2006, Norby and Iversen 2006) and observed
progressive N limitation (Luo et al. 2004) are all thought to
decrease the amount of N accessible to trees, thus limiting
any future NPP stimulation by elevated CO2. Scarcity of N
might be alleviated by predicted increases of atmospheric N
deposition (Reay et al. 2008), but the exact extent of this phe-
nomenon together with its interaction with increased C fixa-
tion is currently unknown at ecosystem scale. We know that
light-saturated carbon uptake increases in trees grown in a
CO2-enriched atmosphere (Ainsworth and Long 2005), but
the initial stimulation decreases if photosynthetic acclimation
takes place and foliar N content declines (Ellsworth et al.
2004, Ainsworth and Rogers 2007). Foliar N content per unit
leaf area often declines under elevated CO2 (Ellsworth et al.
2004), an effect frequently amplified by denser canopies un-
der elevated CO2. Larger leaf biomass requires higher N in-

Figure 2. Conceptual scheme of soil N cycling. Factors affecting the N cycling are reported (grey numbers, those changed by elevated CO2

only; black numbers, those changed by both elevated CO2 and temperature): (1) N input; (2) input C/N ratio; (3) plant N requirement; (4) SOM
turnover; (5) SOM decomposability; (6) microbial growth rates; (7) microbial turnover; (8) microbial composition.
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vestment into Rubisco, an enzyme driving photosynthesis in
C3 plants and responsible for about 25% of foliar N content.
Photosynthetic N use efficiency (PNUE), defined as the net
amount of CO2 assimilated per unit of foliar N, is also in-
creased in high CO2, predominantly by enhanced CO2 uptake
rather than by N redistribution (Liberloo et al. 2007, Leakey
et al. 2009). As atmospheric CO2 continues to rise, further
increases in PNUE would be necessary to sustain higher
CO2 uptake. Photosynthetic activity and the growth rate
can be stimulated by N addition in N-poor environments,
but the response was found to be highly variable among
clones of a single species, let alone different tree species
(King et al. 2008). Similarly, long-term exposure to elevated
CO2 alters the relationship between photosynthesis or its
component processes and foliar N content (increased PNUE).
However, providing abundant N to trees grown under elevat-
ed CO2 restores these relationships back to the status found
under ambient conditions (Crous et al. 2008). These findings
provide early evidence that increased carbon fixation in ele-
vated CO2 will only continue if sufficient N supply to tree fo-
liage can be maintained. Nitrogen availability to metabolically
important tissues can also be influenced by the movement of N
within the plant. The process of N retranslocation from leaves
before their abscission was shown to be slightly increased by
elevated CO2 in different poplar species, accompanied by
more N immobilized in woody tissues (Calfapietra et al.
2007). Since woody tissues have substantially longer turnover
times, N retranslocation could enhance N immobilization.
Nitrogen allocation in trees, as well as the total N uptake, is

one of the main factors affecting foliar N concentration. In
theory, trees optimize their N allocation for attaining maxi-
mum growth, thus allocating available N to organs with
greatest benefit to net growth. The commonly observed de-
crease in foliar N content under elevated CO2 (Tingey et al.
2003, Marinari et al. 2007) might be a result of either de-
creased N uptake per unit of biomass produced or preferential
allocation of acquired N to other tissues (e.g., fine roots). Ni-
trogen uptake did not change in a short-rotation poplar plan-
tation despite considerably increased biomass production
under elevated CO2, resulting in a significant increase in ni-
trogen use efficiency (NUE) under elevated CO2 (Calfapietra
et al. 2007). However, in other FACE sites, the stimulation of
biomass production due to elevated CO2 was supported by
increased N uptake by trees, with negligible variation of
NUE (Finzi et al. 2007). Analysing observations from two
contrasting sites, Franklin et al. (2009) noted that soil N
availability did not decline under an evergreen (Pinus taeda)
forest, where a negative feedback between reduced soil N
availability and uptake prevented N depletion. On the other
hand, a broadleaf (Liquidambar styraciflua) stand achieved
higher N uptake through increased production of fine roots—
resulting in decreasing soil N availability. The authors used the
investment in fine root systems to explain these contradictory
responses of forests to elevated CO2.
Fine roots of forest trees are, of course, not the only bio-

mass pool increasingly competing for N under elevated CO2.

Symbiotic mycorrhizal fungi colonizing tree roots have been
shown to significantly benefit from increased photosynthate
availability under elevated CO2 (Treseder 2004, Alberton et
al. 2007). Nitrogen uptake by mycorrhizal networks is
thought to be much more efficient and rapid than that of fine
tree roots, largely due to a greater degree of soil exploitation
and enzymatic depolymerization of organic compounds con-
taining N (Lindahl et al. 2002, Read and Perez-Moreno
2003). However, the interaction between mycorrhizal symbi-
osis and elevated CO2 needs further investigation as stimula-
tion of mycorrhizal growth under elevated CO2 was shown to
be negatively correlated with tree shoot N content and overall
plant N uptake (Alberton et al. 2007). One possible explana-
tion of such contradictory observations of N uptake is a fre-
quently observed increase in fungal abundance or an increase
in fungi/bacteria ratio in soils under elevated CO2 (Treseder
2004, Carney et al. 2007) and/or an increase in the prolifer-
ation of mycorrhizal fungi (Parrent et al. 2006). In a recent
review, Hu et al. (2006) report that about two-thirds of 135
experiments on trees and herbaceous plants observed an in-
crease in the infection and external fungal hyphae of both ar-
buscular mycorrhizae (AM) and ecto-mycorrhizae (EM)
under elevated CO2. Significantly, no studies reported nega-
tive effects on mycorrhizal colonization or extraradical bio-
mass. Fungi commonly have higher C/N ratios than soil
bacteria, using smaller amounts of N to produce equivalent
amounts of biomass. Moreover, the translocation of C and N
within fungal mycelium might explain the low mineralization
rates and, hence, lower N availability in fungal dominated eco-
systems (Boberg et al. 2010). Positive effects of elevated CO2

on mycorrhizal activity (Lukac et al. 2003, Pritchard et al.
2008) and turnover (Godbold et al. 2006) may enhance tree
N nutrition in the future but only if mycorrhizal fungi prolife-
rate at the expense of bacteria or other fungal groups.
Immediate N availability in the soil is driven by several N

release and uptake processes, the relative importance of
which is dependent on the overall soil N status. Focusing
on organic N uptake, N mineralization in N-poor ecosystems
such as boreal forests should be of lesser importance than mi-
crobial depolymerization (Schimel and Bennett 2004). There
are currently no direct observations of effects of elevated
CO2 on this link; the few studies that focused on the impact
of elevated CO2 on organic N uptake by plants reported no
changes in temperate forest (Hofmockel et al. 2007) or in-
creased uptake of both mineral and organic substrates in des-
ert shrubs (Jin and Evans 2010).
Increased C input under elevated CO2 is reported to stim-

ulate either microbial N immobilization (Zak et al. 2000) or
mineralization (priming effect; Blagodatskaya and Kuzyakov
(2008)), depending on the prevalence of N or C limitation in
microbial communities and on the C/N ratio of the substrate
being decomposed (Hodge et al. 2000). When decomposing
substrates with high C/N ratio, microorganisms will retain
more inorganic N (mainly as NH4) during decomposition,
thus reducing the availability of this N pool to plants. Con-
versely, if the C/N ratio of the substrate is lower than that of
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the decomposers, microorganisms will increase the size of the
mineralized N pool in the soil. Since elevated CO2 alters the
C/N ratio of plant litter (Cotrufo et al. 2005), we need to
know how the interaction of these two factors will affect N
cycling and eventually soil N availability. To date, contrast-
ing results have been reported on N cycling in forest ecosys-
tems under elevated CO2, probably reflecting different N
status on the whole ecosystem scale. Nitrogen mineralization
has been found to increase (when coupled to a correspondent
increase in NH4 immobilization) (Holmes et al. 2006), de-
crease (Billings and Ziegler 2005) and, most often, not
change (Zak et al. 2003, Finzi et al. 2006, Austin et al.
2009). Nitrification, which usually is the greatest component
of soil N mineralization, has been reported either to increase
(Carnol et al. 2002), decrease (Lagomarsino et al. 2008) or
not change (Austin et al. 2009).
Current data thus indicate that elevated CO2 will signifi-

cantly affect soil N availability by stimulating net growth,
at least initially. This stimulation may or may not last in
the long term, depending on the gearing between C and N
cycles, existence of physiological limits to increases in
NUE, and whether external N inputs will be able to keep pace
with greater N uptake. Overall N availability under elevated
CO2 appears to be sensitive to forest ecosystem type, a factor
that needs further investigation.

Phosphorus

Phosphorus is used in energy storage and transfer (Tisdale et
al. 1985) and is an important structural component of nucleic
acids, coenzymes, nucleotides, phosphoproteins, phospho-
lipids and sugar phosphates (Schachtman et al. 1998). While
the physiological importance of P and its use in plant metab-
olism are fairly well understood, the knowledge of P biogeo-
chemistry and cycling in forest soils is lagging. Largely due
to the complexity of the processes involved, we are only now
starting to uncover the effects of climate change on P nutri-
tion. Phosphorus is found in inorganic mineral forms and in
organic forms resulting from plant and microbial biomass
turnover. Both inorganic and organic P form a continuum
of compounds in equilibrium with each other, ranging from
the readily plant-available P dissolved in the soil solution to
poorly available P held in stable compounds (Larsen 1967).
In forest soils, geochemical processes determine the long-
term distribution of P, and biological processes influence P
distribution in the short term, as most of the plant-available
P is derived from soil organic matter (Ballard 1980). Any ef-
fects of elevated CO2 on P availability in forests are therefore
likely to be indirect and mediated by the response of the bi-
otic part of the ecosystem.
The proportion of organic P in forest soils varies widely

(Newbery et al. 1997), its availability driven by the action
of ectoenzymes produced by roots, mycorrhizal hyphae and
soil microorganisms (Read et al. 2004). Production of such
enzymes, which forms a significant proportion of rhizodepo-
sition, has been shown to increase under elevated atmospher-

ic CO2 (Ineson et al. 1996, Lagomarsino et al. 2008),
reflecting an increase in microbial and/or plant demand for
P. In addition, the contribution of tree roots and mycorrhizas
to mineral weathering and subsequent release of P is well
known (Dijkstra et al. 2003). Put together, increases in below-
ground availability of C under elevated CO2 may lead to in-
creased rates of P mineralization and release from the soil
mineral fraction.
There are not many observations on the effects of elevated

CO2 on P availability and uptake in trees. In one of such stud-
ies, Johnson et al. (2000) investigated a fire-regenerated Flor-
ida scrub oak ecosystem. During the first year after the fire, a
negative effect of CO2 on P availability was shown, later
leading to a decrease in extractable P after 5 years (Johnson
et al. 2003). In a sweetgum forest subjected to elevated CO2,
no effects of elevated CO2 on P cycling were shown after 2
years of enrichment (Johnson et al. 2004). However, Khan et
al. (2008) found that growing poplar under elevated CO2 sig-
nificantly changed the fractionation of P in the soil. Observed
increase in tree growth under elevated CO2 did not result in
depletion of P pools in soils but rather increased storage of P
in the rooting zone. In the fast-growing poplar plantation, the
biogenically driven weathering of primary minerals in the
rooting zone was sufficient to maintain the replenishment
of plant-available inorganic P.
Since P cycling in forests is much more efficient and its

recovery by trees more complete than that of N, it is likely
that any effect of CO2 on the P cycle will be driven by
changes in C uptake, tree growth and litter production. Par-
ticularly noteworthy is the potential role of mycorrhizas in
the mediation of effects of elevated CO2 on P uptake. Phos-
phorus nutrition of tree seedlings grown in unadulterated for-
est soils under elevated CO2 was shown to improve when
grown in the presence of mycorrhiza (Choi et al. 2009). Such
findings highlight the need to investigate nutrient cycling in
natural conditions with all major fluxes, feedbacks and inter-
actions present and largely undisturbed.

Other nutrients

As already mentioned, we are only now starting to uncover
the effects of climate change on tree nutrition; our knowledge
of the full range of nutrients is very limited. For obvious rea-
sons related to human nutrition, published studies of effects
of elevated CO2 on nutrients other than N and P are almost
exclusively based on crop plants. Such studies report a wide
variation in effects of CO2 enrichment on plant nutrition; the
direction and the size of observed effects varies greatly de-
pending on plant species and soil nutrient availability. In gen-
eral, however, elevated CO2 is expected to significantly alter
the elemental composition of plants and to lower the micro-
nutrient concentration in plant tissues (Loladze 2002). An in-
vestigation of immediate nutrient uptake, carried out on a
timescale of days, revealed that in young walnut seedlings
grown in elevated CO2, nutrient uptake rates of K+, Ca2+

and Mg2+ were proportional to CO2 uptake rate, but that of
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P ion was not. This indicates that despite the nutrient storage
capacities previously observed in young trees, nutrient uptake
by roots is strongly coupled to carbon uptake (Delaire et al.
2005). In a more long-term analysis of trace metal concentra-
tion in forest trees grown under FACE treatment, Natali et al.
(2009) found an additional factor guiding element uptake in
elevated CO2. They observed that the dilution of essential mi-
cronutrients in plant tissues harvested from high CO2 treat-
ment was less than that of non-essential ones. Alongside
tree species and soil characteristics, the effect of elevated
CO2 in this study was mediated by the fact whether the par-
ticular metal element is essential to plant growth or not.
Carnol et al. (2002) found an increase in some exchange-

able base cations (Ca2+ and Mg2+) and a decrease in acid ca-
tions (Al3+ and Mn2+) in Scots pine grown under elevated
CO2 in open top chambers. Liu et al. (2007) reported a de-
crease in N, S and B concentrations, increase in K and P con-
centrations and no effects on other elements (Mg, Ca, Mn,
Cu, Zn) in aspen and birch leaf litter under elevated CO2.
At the same site, nutrient input of N, P, S, P, Ca, Mg, Cu
and Zn to soil through leaf litter under elevated CO2 in-
creased, but the return of Mn was reduced. Johnson et al.
(2004) in a sweetgum plantation found increased uptake of
N, K and Mg and significant increases in the requirement
of N, K, Ca and Mg under elevated CO2. However, elevated
CO2 had no significant effect on availability of any measured
nutrient in the soil, with the exception of the reduction in
SO4

2− and Ca2+ in soil solution.
Nutrient availability in soil relies on the presence of cation

exchange capacity (CEC), an inherent soil property which
may be strongly affected by elevated CO2. In a fast-growing
poplar plantation, an increase in base cation availability (Ca
and Mg), together with an overall increase in CEC, was
found under elevated CO2 (Lagomarsino et al. 2006). A
corresponding increase in the concentration of foliar Mg

was also observed but was limited to the beginning of the
growing season (Marinari et al. 2007). An increase in CEC
under elevated CO2 can result from an increase in organic
matter content, roots and mycorrhizal biomass and exudation
(Mareschal et al. 2010) and soil aggregation status (Hoosbeek
et al. 2006). Trees growing in elevated CO2 atmosphere
might therefore be able to (indirectly) affect the soil’s capac-
ity for nutrient provision and thus regulate nutrient availabil-
ity in the long term.

Effects of elevated temperature

Global temperatures are forecasted to increase during the
course of this century and beyond, bringing about a change
in tree functional biology and nutrient demands, chiefly be-
cause tree species distribution is unlikely to be able to keep
pace with climatic changes. The magnitude and the speed of
nutrient cycles in forests differ greatly due to the degree of
biological control and the origin of the elements. Elements
with primarily biologically controlled cycles (such as C and
N) might show different reaction to changing temperature
than elements with cycles controlled both by biological and
geological processes (such as P, S and K) or elements with
predominantly geologically controlled cycles (such as K,
Ca, Mg, S or micronutrients, e.g., Wood et al. 2006, Wata-
nabe et al. 2007). Since soil and especially air temperature
are more difficult to manipulate than atmospheric CO2 at eco-
system level, our knowledge about the effects of increasing
temperatures on this scale is currently limited and generally
inferred from smaller scales or models.

Direct effects on trees

Changes in ambient temperature may induce a range of re-
sponses in trees and in forest ecosystems (Figure 3). Starting

Figure 3. Component processes of ecosystem nutrient cycle, directly (1) and indirectly (2) affected by increasing temperature (adapted from
BassiriRad 2000).
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with photosynthesis, optimal Rubisco activity is considered
to be at around 25 °C, and therefore the highest rates of pho-
tosynthesis should be recorded at this temperature. However,
Rubisco is known to acclimate to temperature (Bernacchi et
al. 2002), and at high temperatures O2 is known to dissolve
more efficiently than CO2, which leads to higher availability
of O2 at the Rubisco sites in the chloroplasts. Hence, a higher
rate of photorespiration reduces the efficiency of photosyn-
thesis with increasing temperatures. As a consequence, it is
extremely difficult to define an optimal temperature range
for trees. If the acclimation processes are not considered,
it could be surmised that global warming may improve
the photosynthetic efficiency of boreal forests by allowing
them to operate closer to the thermal optimum of Rubisco.
At the same time, the opposite would be true for the Med-
iterranean forests which already experience temperatures
above the physiological optimum for most of the year.
The implications in terms of tree nutrition could be far

reaching and, similar to the effects of elevated CO2, are prob-
ably dependent on the differential responses of nutrient sup-
ply and demand. If an increase in boreal forest productivity
due to higher temperatures is to be maintained in the long
run, it will have to be accompanied by an increase in weath-
ering or deposition. Increased mineralization and turnover
rates of organic matter might initially supply sufficient nutri-
ents to support higher growth, but any nutrients currently
held in undecomposed organic matter would eventually be
locked up in larger biomass. Conversely, if tree growth in arid
and semi-arid regions will not be stimulated by further
increases in temperature, forests in this environment are un-
likely to become nutrient limited—especially since existing
climate scenarios forecast a concomitant increase in drought.
Soil heating experiments have shown that the stimulation

of tree growth by increasing temperature is species specific
(Farnsworth et al. 1995, King et al. 1999, Prieto et al.
2009), thus highlighting the potential impact of changing spe-
cies composition and altered natural distribution of tree spe-
cies in the future (Saxe et al. 2001). Nutrient uptake by trees,
an active process supported by enzyme activity, is highly
temperature dependent (Rennenberg et al. 2006). The direct
effect of increasing soil temperature on this process is diffi-
cult to quantify in field conditions, largely because it is con-
founded by co-occurring drought. Several authors claim that
nutrient uptake increases with rising temperature (Bassirirad
2000, Dong et al. 2001, Weih and Karlsson 2002), but, just
like other enzymatic processes, the rate of uptake increases
only until a threshold temperature is reached. Gessler et al.
(1998) measured ammonium uptake in spruce and found
maximum uptake at 20 °C, followed by a decrease at higher
temperatures. Given that forest soil temperatures are much
lower than the expected critical threshold, such limitation
of nutrient uptake is unlikely to be reached in field condi-
tions—at least not under a closed canopy forest.
Unless the ambient temperature is already at the photosyn-

thetic threshold, as in the aforementioned example of Medi-
terranean forests, any increase in temperature due to climatic

change should favour tree growth. In turn, better growth con-
ditions should increase within-tree nutrient allocation to tis-
sues most likely to take advantage of the new environment.
Domisch et al. (2002) observed increased nutrient allocation
to shoots of Scots pine seedlings and Fotelli et al. (2005)
have shown higher N allocation to beech leaves when the
trees were grown at higher air and soil temperatures. An im-
portant point to consider is the nature of temperature in-
creases, whether it is a small and gradual increase in mean
annual temperature or a severe hot spell in the middle of
the growing season. A period of very high seasonal maxi-
mum is likely to disturb normal nutrient uptake patterns,
not least because of its interaction with drought. Due to their
longevity, trees have developed physiological mechanisms to
deal with such disruption and are able to store and re-mobi-
lize nutrients (Grassi et al. 2003). However, repeated seasonal
stress might exhaust this capacity for nutrient storage, with
detrimental effects for tree health in the long run. Most nu-
trients, with the notable exceptions of Ca and Bo (Epstein
1973), can be transported both upwards (xylem flow) and
downwards (phloem flow) within a tree. This cycle of nutri-
ents is thought to act as a buffer against minute nutrient
shortages (Gessler et al. 1998) and is probably involved in
metabolic signalling and growth regulation in trees (Nordin
et al. 2001). Sardans et al. (2008b) have shown strong effects
of heat and drought on aboveground biomass accumulation
of some elements. Such direct effects of temperature on tree
physiology and metabolism are likely to be species and ele-
ment specific.

Indirect effects of temperature

Increasing temperature is likely to affect nutrient availability
in the soil through the stimulation of organic matter decom-
position and mineralization of soil nutrients (Jarvis and Lin-
der 2000). Available studies on the influence of warming on
N cycling in soils report highly variable responses across a
range of ecosystems (Rustad et al. 2001, Beier et al. 2008).
In particular, observed effects appear to be very seasonal,
with the highest increase in enzyme activities related to N cy-
cling during the winter when temperature is limiting or in the
spring during the period of maximum plant and microbial ac-
tivity (Beier et al. 2008, Sardans et al. 2008a). These authors
also report a different pattern for NH4 and NO3 availability in
soil, the former decreasing in spring in concomitance with the
increase in N uptake by plants, with the latter increasing at
the same time, probably due to an increase in nitrification
activity.
Several studies have shown that soil warming can increase

soil N mineralization and possibly nitrate leaching (see re-
view by Pendall et al. (2004)). In a meta-analysis of 32 re-
search sites, Rustad et al. (2001) found a significant
increase in soil N mineralization at higher temperatures, with
beneficial effects on plant growth. However, Beier et al.
(2008) reported that nitrogen mineralization was relatively in-
sensitive to the temperature increase across a range of ecosys-
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tems and was mainly affected by changes in soil moisture.
Moreover, the authors reported an asymmetric response of
C and N mineralization to warming, with C, but not N, min-
eralization following the Q10 relationship, leading them to
hypothesize progressive nitrogen limitation and thereby accli-
mation of plant production. Litter decomposition was pre-
dicted to increase by 4–7% relative to the present rate
following an increase in temperature and precipitation esti-
mated from a double atmospheric CO2 scenario (Moore et
al. 1999), with important implications for nutrient availability
to the soil. Higher enzyme activities related to N cycling in
soil in response to warming have been reported for shrubland
(Sardans et al. 2008a) and fir forest (Feng et al. 2007) in the
absence of moisture limitations. Enzyme activities are tem-
perature-sensitive processes, generally following the Q10 re-
lationship, as is the case in respiration (Davidson and
Janssens 2006) where even a slight temperature increase
can produce a significant enhancement of activity (Kuzyakov
et al. 2007).
On the whole, despite observed differences in responses to

higher temperature, an increase in N mineralization in soil
can be predicted under favourable moisture conditions and
substrate availability, mainly in those ecosystems where tem-
perature is a limiting factor. An increase in N mineralization
under increasing temperature is reported in a recent review by
Hyvonen et al. (2007). In a negative feedback loop, this nor-
mally leads to increased NPP, increased N demand and ulti-
mately to decreased N availability in the soil.

Interactions and feedbacks

As the presented current knowledge makes clear, we have in-
formation about effects of singular factors of climate change
on tree nutrition, mostly in seedlings or young trees. We
know little about interactions of multiple factors or about
long-term effects on mature trees. Having said that, certain
interactions between the effects of elevated CO2 and increas-
ing temperature on tree physiology are fairly well described
and understood. For instance, photosynthetic rate increases
substantially with elevated CO2, and the effect is more pro-
nounced at temperatures around 20 °C than at 10 °C (Si-
gurdsson et al. 2002). However, it is likely that forest trees
will be subjected to several vectors of climate change at the
same time, in addition to CO2 concentration and warming.
Use of fully factorial experiments to investigate such interac-
tions is advisable; however, as Norby and Luo (2004) point
out, their results are often confusing and difficult to interpret.
The trade-off between the number of factors and the replica-
tion rate due to financial and/or space constraints must be
carefully considered to maximize the information value of ev-
ery such experiment.
Elevated atmospheric CO2 is expected to directly influence

tree physiology, compounding the changes affected by altera-
tions of ambient temperature and rainfall (both amounts and
patterns)—with the complex interactions and feedbacks such

changes bring. Moreover, any direct effects on ecosystem
functioning brought about by climate change will certainly
have indirect effects on nutrient availability and cycling.
Due to the dearth of experiments investigating multiple fac-
tors, we know relatively little about such phenomena. Any
change in nutrient availability, utilization or cycling in an
ecosystem component such as soil, plant biomass or soil wa-
ter will affect nutrient status of other components, causing a
potential cascade of effects (Campbell et al. 2009). For in-
stance, it has been shown that future increases in temperature
may increase root mortality more in N-rich soils in temperate
forests than in N-poor soils in boreal forests, with important
implications for the N cycling between plant and soil (Hyvo-
nen et al. 2007).
Mineral weathering, together with atmospheric deposition,

is the most important source of plant nutrients other than C,
H, O and N. The process of weathering can be best described
as a concerted attack of several soil formation processes on
mineral structures found within the rooting zone or wider
soil. The rate of weathering is strongly dependent on soil
temperature and soil moisture (White et al. 1999), both of
which will be affected by climate change. Increasing temper-
ature will speed up the release of nutrients locked up in the
mineral soil fraction, while decreasing soil moisture may lim-
it this process. Higher rates of weathering of nutrient-rich
rocks generally lead to higher base saturation of the soil
and maintain higher soil pH—both characteristics favourable
to plant growth. While elevated CO2 is not thought to have a
direct effect on weathering, larger supply of photosynthate to
mycorrhizal fungi has been shown to occur under elevated
CO2 (Treseder 2004). Since mycorrhizas are directly impli-
cated in mineral weathering through the release of organic
acids (van Breemen et al. 2000), their proliferation may po-
tentially increase ecosystem nutrient availability. There is
some evidence of a direct transport of nutrients from soil
minerals to trees via mycorrhizal hyphae (Kohler et al.
2000), providing a direct link between increased C fixation
and tree nutrition. The implication of these findings is that
the nutrition of forest trees might be maintained at higher le-
vels of NPP in a future elevated CO2 atmosphere; however,
we do not have any information to confirm or refute the long-
term viability or the scale of such processes.
Despite the fact that most nutrients necessary for tree

growth ultimately originate from mineral weathering or from
atmospheric deposition, the bulk of nutrient uptake comes
from the recycling of organic matter deposited to the soil. Nu-
trients are released into the soil solution during the decompo-
sition of litter and are quickly taken up and recycled for the
production of new organic matter. Climate change is likely to
have a very significant effect on this process as nearly all or-
ganisms involved will be affected, both directly and indirect-
ly. Litter quality, temperature and soil moisture are known to
control the rate of decomposition and subsequent release of
nutrients. Elevated CO2 alters litter quality (Cotrufo et al.
1998, 2005), with significant decreases in its nutrient content.
Less nutrients per unit weight, coupled with slower litter de-
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composition under elevated CO2 (Parsons et al. 2008), are
therefore likely to reduce nutrient availability in the long
run. Working in the opposite direction, as several soil warm-
ing experiments have shown (Robinson et al. 1995, Verburg
et al. 1999), a 3–5 °C rise in soil temperature strongly in-
creases the rate of decomposition. All of these effects appear
to be tree species specific and are probably also influenced by
soil properties.
Interactions between elevated CO2 and temperature may

greatly affect soil enzyme activity via changes in soil micro-
bial community and plant growth. Feng et al. (2007) found
that the compound effects of elevated CO2 and temperature
on enzyme activities were more significant than those of ele-
vated CO2 or temperature alone. Such positive feedback be-
tween elevated CO2 and temperature is to be expected, as
both factors have a generally positive effect on enzyme acti-
vity, the first through an increase in substrate availability and
the second through an enhancement of activity rates. In N-lim-
ited ecosystems, warming may make more N available for in-
creased plant uptake under elevated CO2 by increasing N
mineralization (Shaver et al. 2000), but the immediate avail-
ability of N is likely to be moderated by temperature, moisture,
labile C and N input, soil pH and texture (Reich et al. 1997)—
all characteristics likely to be altered by climate change.

Future research

Scientific evidence gathered so far indicates that climate
change is likely to have a significant impact on tree nutrient
uptake, allocation and cycling. More specifically, elevated
CO2 and temperature reviewed in this article have the poten-
tial to change both tree physiology and the long-term avail-
ability of nutrients. To date, however, we do not possess
sufficient breadth of information relating to tree nutrition to
be able to make reliable forecasts.
To close this gap in knowledge, CO2 and temperature ma-

nipulation studies should proceed from studying the re-
sponses of seedling or young trees to evaluating impacts on
mature trees and to work on an ecosystem scale, thus taking
into account interactions and feedbacks between plants and
soil (Calfapietra et al. 2010). Future studies should focus
on simultaneous investigation of multiple factors in order to
uncover and study interactions and feedback mechanisms that
drive nutrient cycles in forest ecosystems. Although clearly
needed, it will be difficult to initiate large-scale warming
and/or CO2 enrichment experiments on forest ecosystems
due to obvious funding constraints. To get around such lim-
itations, experiments that make use of existing climatic and
soil gradients should be established to test the response of
the dominant forest tree species to alterations in nutrient
availability. An important avenue of research, somewhat un-
represented at the moment, is the development of dedicated
nutrient cycle models to assess and predict the response of
forests to climate change and to include these in forest veg-
etation dynamics models.
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